Skip to main content
Log in

Higher-dimensional fractional time-independent Schrödinger equation via fractional derivative with generalised pseudoharmonic potential

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, we obtain approximate bound-state solutions of N-dimensional time-independent fractional Schrödinger equation for the generalised pseudoharmonic potential which has the form \(V(r^{\alpha })=a_1r^{2\alpha } + ({a_2}/{r^{2\alpha }})+a_3\). Here \(\alpha \;(0<\alpha <1)\) acts like a fractional parameter for the space variable r. The entire study consists of the Jumarie-type fractional derivative and the elegance of Laplace transform. As a result, we can successfully express the approximate bound-state solution in terms of Mittag–Leffler function and fractionally defined confluent hypergeometric function. Our study may be treated as a generalisation of all previous works carried out on this topic when \(\alpha =1\) and N arbitrary. We provide numerical result of energy eigenvalues and eigenfunctions for a typical diatomic molecule for different \(\alpha \) close to unity. Finally, we try to correlate our work with a Cornell potential model which corresponds to \(\alpha = {1}\) \(/\) \({2}\) with \(a_3=0\) and predicts the approximate mass spectra of quarkonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I Podlubny, Fractional differential equations, mathematics in science and engineering (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  2. I Podlubny, Fract. Calculus. Appl. Annal. 5, 367 (2002)

    Google Scholar 

  3. B B Mandelbrot, The fractal geometry of nature (Freeman, New York, 1982)

    MATH  Google Scholar 

  4. F Riewe, Phys. Rev. E 53, 1890 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  5. S Muslih, D Baleanu and E Rabei, Phys. Scr. 73, 436 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. N Laskin, Phys. Lett. A 298, 298 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. N Laskin, Phys. Rev. E 66, 056108 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. X Y Guo and M Y Xu, J. Math. Phys. 47, 082104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. J Dong and M Xu, J. Math. Anal. Appl. 344, 1005 (2008)

    Article  MathSciNet  Google Scholar 

  10. K S Miller and B Ross, An introduction to the fractional calculus and fractional differential equations (John Wiley and Sons, New York, 1993)

    MATH  Google Scholar 

  11. M Caputo, Geophys. J. R. Astr. Soc. 13, 529 (1967)

    Article  ADS  Google Scholar 

  12. G Jumarie, Comput. Math. Appl. 51, 1367 (2006)

    Article  MathSciNet  Google Scholar 

  13. G Jumarie, Appl. Math. Lett. 18, 817 (2005)

    Article  MathSciNet  Google Scholar 

  14. U Ghosh, S Sengupta, S Sarkar and S Das, Eur. J. Acad. Essays 2, 70 (2015)

    Google Scholar 

  15. U Ghosh, S Sarkar and S Das, Adv. Pure Math. 5, 717 (2015)

    Article  Google Scholar 

  16. R Kamocki and C Obczyński, J. Math. Phys. 55, 022902 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. S R Raj and S S Jernith, Ann. Pure Appl. Math. 15, 209 (2017)

    Article  Google Scholar 

  18. Y Khan and M Madani, Appl. Math. Lett. 25, 1340 (2012)

    Article  MathSciNet  Google Scholar 

  19. S H Dong, Wave equations in higher dimensions (Springer, Berlin, 2011)

    Book  Google Scholar 

  20. T Das, U Ghosh, S Sarkar and S Das, J. Math. Phys. 59, 022111 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. S H Dong and Z Q Ma, Int. J. Mod. Phys. E 11, 155 (2002)

    Article  ADS  Google Scholar 

  22. L-Y Wang et al, Found. Phys. Lett. 15, 569 (2002)

    Article  MathSciNet  Google Scholar 

  23. S H Dong, Appl. Math. Lett. 16, 199 (2003)

    Article  MathSciNet  Google Scholar 

  24. N Sh Ussembayev, Int. J. Theor. Phys. 48, 607 (2009)

    Article  Google Scholar 

  25. T Das and A Arda, Adv. High Energy Phys.  2015, Article ID 137038 (2015)

  26. C Agon et al, Phys. Rev. D 98, 025019 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. J Banerjee, U Ghosh, S Sarkar and S Das, Pramana – J. Phys. 88(4): 70 (2017)

    Article  ADS  Google Scholar 

  28. G Jumarie, Acta Math. Sin. 28, 1741 (2012)

    Article  Google Scholar 

  29. G Jumarie, Cent. Eur. J. Phys. 11, 617 (2013)

    Google Scholar 

  30. G Jumarie, Appl. Math. Lett. 22, 378 (2009)

    Article  MathSciNet  Google Scholar 

  31. S Das, Kindergarten of fractional calculus (to be published)

  32. A A Kilbas, H M Srivastava and J J Trujillo, Theory and application of fractional differential equations (Elsevier, Amsterdam, 2006)

    MATH  Google Scholar 

  33. G M Mittag-Leffler, C. R. Acad. Sci. Puaris (Ser. II) 137, 554 (1903)

    Google Scholar 

  34. C Gang, Chin. J. Phys. 14, 1075 (2005)

    Article  Google Scholar 

  35. E Eichten, K Gottfried, T Kinoshita, K D Lane and T M Yan, Phys. Rev. D 17, 3090 (1978)

    Article  ADS  Google Scholar 

  36. N V Maksimenko and S M Kuchin, Russ. Phys. J. 54, 57 (2011)

    Article  Google Scholar 

  37. M Abu-Shady, Int. J. Appl. Math. Theor. Phys. 2, 16 (2016)

    Google Scholar 

  38. J Beringer et al, Phys. Rev. D 86, (2012) 1

    Article  Google Scholar 

  39. R M Barnett et al, Phys. Rev. D 54, (1996) 1

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their careful reading, useful comments and constructive suggestions for the improvement of the manuscript of the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uttam Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, T., Ghosh, U., Sarkar, S. et al. Higher-dimensional fractional time-independent Schrödinger equation via fractional derivative with generalised pseudoharmonic potential. Pramana - J Phys 93, 76 (2019). https://doi.org/10.1007/s12043-019-1836-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1836-x

Keywords

PACS Nos

Navigation