Skip to main content
Log in

Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this article, the effect of thermo-diffusion and diffusion-thermo on hyperbolic tangent magnetised nanofluid with Hall current past a nonlinear porous stretching surface has been analysed numerically. The impact of thermal slip and chemical reaction are also examined in our current analysis. Runge–Kutta–Merson method and shooting method have been successfully employed to obtain numerical results for the governing nonlinear differential equations. The impact of Hartmann number, Hall parameter, porosity parameter, fluid parameter, Weissenberg number, Richardson number, concentration buoyancy parameter, Schmidt number, Dufour parameter, Soret number, Prandtl number, chemical reaction parameter, and power-law exponent are discussed and demonstrated graphically for the flow phenomena. Furthermore, the description for Sherwood number, rate of shear stress, and Nusselt number are displayed using tables against all the pertinent parameters. A detailed numerical comparison for the power-law exponent and Prandtl number has been elaborated via tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J Buongiorno, L W Hu, S J Kim, R Hannink, B Truong and E Forrest, Am. Nucl. Soc. 162, 80 (2009)

    Google Scholar 

  2. R Saidur, K Y Leong and H A Mohammad, Renew. Sustain. Energy. Rev. 15, 1646 (2011)

    Google Scholar 

  3. Z H Liu and Y Y Li, Int. J. Heat Mass Transf. 55, 6786 (2012)

    Google Scholar 

  4. N.S Akbar, S Nadeem, C Lee, Z H Khan and R U Haq, Result Phys. 3, 161 (2013)

    ADS  Google Scholar 

  5. S Nadeem, R Mehmood and N S Akbar, Int. J. Therm. Sci. 78, 90 (2014)

    Google Scholar 

  6. M M Rashidi, N Freidoonimehr, A Hosseini, O A Bég and T K Hung, Meccanica 49, 469 (2014)

    Google Scholar 

  7. M Sheikholeslami, M M Rashidi, D M Al Saad, F Firouzi, H B Rokni and G Domairry, J. King Saud Uni-Sci.28(4), 380 (2016)

    Google Scholar 

  8. T Hayat, S Asad, M Mustafa and A Alsaedi, Comput. Fluid. 108, 179 (2015)

    Google Scholar 

  9. T Hayat, T Muhammad, S A Shehzad and A Alsaedi, AIP Adv. 5, 017107 (2015)

    ADS  Google Scholar 

  10. S T Mohyud-Din, Z A Zaidi, U Khan and N Ahmed, Aerospace Sci. Technol. 46, 514 (2015)

    Google Scholar 

  11. J A Khan, M Mustafa, T Hayat and A Alsaedi, Int. J. Heat Mass Transf. 86, 158 (2015)

    Google Scholar 

  12. M Mustafa, J A Khan, T Hayat and A Alsaedi, Int. J. Nonlinear Mech. 71, 22 (2015)

    ADS  Google Scholar 

  13. T Hayat, M Hussain, S A Shehzad and A Alsaedi, J. Appl. Mech. Tech. Phys. 57, 173 (2016)

    ADS  MathSciNet  Google Scholar 

  14. M M Bhatti, A Shahid and M M Rashidi, Alexandria Eng. J. 55, 51 (2016)

    Google Scholar 

  15. M M Bhatti and M M Rashidi, J. Mol. Liq. 221, 567 (2106)

  16. S M S Murshed, K C Leong and C Yang, Appl. Therm. Eng. 28, 2109 (2008)

    Google Scholar 

  17. C Scherer and A M F Neto, Braz. J. Phys. 35, 718 (2005)

    ADS  Google Scholar 

  18. N S Akbar, S Nadeem, R U Haq and Z H Khan, Chin. J. Aeronaut. 26, 1389 (2013)

    Google Scholar 

  19. M Sheikholeslami, S Abelman and D D Ganji, Int. J. Heat Mass Transf. 79, 212 (2014)

    Google Scholar 

  20. M Sheikholeslami and S Abelman, IEEE Trans. Nanotechnol. 14, 561 (2015)

    Google Scholar 

  21. M Sheikholeslami and R Ellahi, Int. J. Heat Mass Transf. 89, 799 (2015)

    Google Scholar 

  22. M Sheikholeslami, N S Akbar and M T Mustafa, Therm. Sci.21(95), 95 (2015)

    Google Scholar 

  23. R Ellahi, M Hassan and A Zeeshan, IEEE Trans.Nanotechnol. 14, 726 (2015)

    Google Scholar 

  24. A Zeeshan, R Ellahi and M Hassan, Euro. Phys. J. Plus 129, 1 (2015)

    Google Scholar 

  25. J Qing, M M Bhatti, M A Abbas, M M Rashidi and M E S Ali, Entropy 18, 123 (2016)

    ADS  Google Scholar 

  26. M M Bhatti, T Abbas, M M Rashidi, M E S Ali and Z Yang, Entropy 18, 224 (2016)

    ADS  Google Scholar 

  27. M M Bhatti and M M Rashidi, Int. J. Appl. Comput. Math.3(3), 2275 (2017)

    MathSciNet  Google Scholar 

  28. M M Bhatti, T Abbas, M M Rashidi and M E S Ali, Entropy 18, 200 (2016)

    ADS  Google Scholar 

  29. I S Oyelakin, S Mondal and P Sibanda, Alexandria Eng. J. 55(2), 1025 (2016)

    Google Scholar 

  30. M M Bhatti, A Zeeshan and R Ellahi, Pramana – J. Phys. 89(3): 48 (2017)

    Google Scholar 

  31. T Mahmood, Z Iqba and A Shahzad, Pramana – J. Phys. 92(2): 14 (2019)

    Google Scholar 

  32. P K Kameswaran, M Narayana, P Sibanda and P V S N Murthy, Int. J. Heat Mass Transf. 55, 7587 (2012)

    Google Scholar 

  33. M A El-Aziz, Phys. Scr. 89, 085205 (2014)

    ADS  Google Scholar 

  34. C Zhang, L Zheng, X Zhang and G Chen, Appl. Math. Model. 39, 165 (2015)

    MathSciNet  Google Scholar 

  35. D Pal and G Mandal, Nucl. Eng. Des. 273, 644 (2014)

    Google Scholar 

  36. C A Reddy and B Shankar, World J. Mech. 5, 211 (2015)

    Google Scholar 

  37. G K Ramesh, B J Gireesha, T Hayat and A Alsaedi, J. Nanofluid. 4, 100 (2015)

    Google Scholar 

  38. W A Khan, A S Alshomrani, A K Alzahrani, M Khan and M Irfan, Pramana – J. Phys. 91(5): 63 (2018)

    Google Scholar 

  39. S P Goqo, S Mondal, P Sibanda and S S Mots, J. Comput. Theor. Nanosci. 13(10), 7483 (2016)

    Google Scholar 

  40. M Khan, M Irfan and W A Khan, Pramana – J. Phys. 92(2): 17 (2019)

    ADS  Google Scholar 

  41. S R Mishra, P K Pattnaik, M M Bhatti and T Abbas, Indian J. Phys. 91(10), 1219 (2017)

    ADS  Google Scholar 

  42. S R Mishra and M M Bhatti, Chin. J. Chem. Eng. 25(9), 1137 (2017)

    Google Scholar 

  43. N Freidoonimehr, B Rostami, M M Rashidi and E Momoniat, Math. Prob. Eng. 2014, Article ID 692728 (2014), https://dx.doi.org/10.1155/2014/692728

  44. P K Kameswaran, S Shaw, P Sibanda and P V S N Murthy, Int. J. Heat Mass Transf. 57, 465 (2013)

    Google Scholar 

  45. A B Rosmila, R Kandasamy and I Muhaimin, Appl. Math. Mech. 33, 593 (2012)

    Google Scholar 

  46. M Sheikholeslami, H R Ashorynejad, G Domairry and I Hashim, J. Appl. Math.2012, Article ID 421320 (2012), https://dx.doi.org/10.1155/2012/421320

  47. A Malvandi, F Hedayati and M R H Nobari, J. Appl. Fluid Mech.7(1), 135 (2014)

    Google Scholar 

  48. M G Reddy, P Padma, B Shankar and B J Gireesha, J. Nanofluids 5, 753 (2016)

    Google Scholar 

  49. D Pal, G Mandal and K Vajravelu, J. Nanofluids 5, 375 (2016)

    Google Scholar 

  50. S Shaw, C H Ram Reddy, P V S N Murthy and P Sibanda, J. Nanofluids5, 408 (2016)

  51. R Cortell, Appl. Math. Comput. 184, 864 (2007)

    MathSciNet  Google Scholar 

  52. K A Yih, Int. Commun. Heat Mass Transf. 26, 95 (1999)

    Google Scholar 

  53. L J Grubka and K M Bobba, ASME J. Heat Transf. 107, 248 (1985)

    Google Scholar 

  54. M E Ali, Wärme-Stoffübertr. 29, 227 (1994)

    ADS  Google Scholar 

  55. O Anwar Bég, A Y Bakier and V R Prasad, Comput. Mater. Sci. 46(1), 57 (2009)

  56. P De, Bionanoscience9(1), 7 (2019)

    Google Scholar 

  57. S I Abdelsalam and M M Bhatti, RSC Adv. 8(15), 7904 (2018)

    Google Scholar 

  58. R Ellahi, M M Bhatti and I Pop, Int. J. Numer. Methods Heat Fluid Flow 26(6), 1802 (2016)

  59. M J Uddin, O A Bég and A I Ismail, J. Thermophys. Heat Transfer 29, 513 (2015)

    Google Scholar 

  60. M M Bhatti, A Zeeshan, R Ellahi, O A Bég and A Kadir, Chin. J. Phys. 58, 222 (2019)

    Google Scholar 

  61. W X Ma, Jie Li and C M Khalique, Complexity2018, 9059858 (2018)

    Google Scholar 

  62. W X Ma, J. Appl. Anal. Comput. 9, 1 (2019)

    MathSciNet  Google Scholar 

  63. W X Ma, Front. Math. China 14(3), 619 (2019)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.M., Yousif, M.A., Mishra, S.R. et al. Simultaneous influence of thermo-diffusion and diffusion-thermo on non-Newtonian hyperbolic tangent magnetised nanofluid with Hall current through a nonlinear stretching surface. Pramana - J Phys 93, 88 (2019). https://doi.org/10.1007/s12043-019-1850-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1850-z

Keywords

PACS Nos

Navigation