Skip to main content
Log in

Two-dimensional ion-acoustic solitary waves obliquely propagating in a relativistic rotating magnetised electron–positron–ion plasma in the presence of external periodic force

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The characteristics of ion-acoustic solitary waves in rotating, weakly relativistic, magnetised and collisionless plasma system comprising electron, positron and ion (EPI) under a periodic external force, whose constituents electron and positron obey Boltzmann distribution, are investigated by deriving forced Zakharov–Kuznetsov (FZK) equation. FZK equation is constructed using reductive perturbation technique (RPT) which is based on multiple-scale analysis of dependent variables. The effects of physical parameters such as the ratio of temperature of electron and positron, the strength of external periodic force, positron concentration in electron background, ion temperature and magnetic field on the analytical solitary wave solution of FZK equation are observed. It is seen that the behaviours of ion-acoustic wave are significantly affected due to the presence of positron and the periodic external forces. The results of this work may be applied when the above-mentioned plasma environment is found in laboratory as well as in space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R Z Sagdeev, Reviews of plasma physics edited by M A Leontovich (Consultants Bureau, New York, 1966) Vol. 4, p 23

  2. H Ikezi, R Taylor and D Baker, Phys. Rev. Lett. 44, 11 (1970)

    Article  ADS  Google Scholar 

  3. F D Tappert, Phys. Fluid 15, 2446 (1972)

    Article  ADS  Google Scholar 

  4. S Tagare, Plasma Phys. 15, 1247 (1973)

    Article  ADS  Google Scholar 

  5. F B Rizzato, J. Plasma Phys. 40, 289 (1988)

    Article  ADS  Google Scholar 

  6. M J Rees, The very early Universe edited by G W Gibbson, S W Hawking and S Siklas (Cambridge University Press, Cambridge, 1983)

  7. W Misner, K S Thorne and J I Wheeler, Gravitation (Freeman, San Francisco, 1973) p. 763

    Google Scholar 

  8. S Weinberg, Gravitation and cosmology (Wiley, New York, 1972)

    Google Scholar 

  9. H R Miller and P J Witter, Active galactic nuclei (Springer, Berlin, 1987) p. 202

    Google Scholar 

  10. A V Gurevich and Y Istomin, Physics of the pulsar magnetosphere (Cambridge University Press, Cambridge, 1993)

    Book  MATH  Google Scholar 

  11. F C Michel, Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  12. E Tandberg-Hansen and A G Emslie, The physics of solar flares (Cambridge University Press, Cambridge, 1988) p. 124

    Google Scholar 

  13. P Goldreich and W H Julian, Astrophys. J. 157, 869 (1969)

    Article  ADS  Google Scholar 

  14. C M Surko and T Murphy, Phys. Fluids B 2, 1372 (1990).

    Article  ADS  Google Scholar 

  15. M Hoshino, J Arons, Y Gallant and A B Langdon, Astrophys. J. 390, 454 (1992)

    Article  ADS  Google Scholar 

  16. A Mushtaq and H A Shah, Phys. Plasmas 12, 012301 (2005)

    Article  ADS  Google Scholar 

  17. S Mahmood and H Saleem, Phys. Plasmas 9, 724 (2002)

    Article  ADS  Google Scholar 

  18. Q Haque, H Saleem and J Vranjes, Phys. Plasmas 9, 474 (2002)

    Article  ADS  Google Scholar 

  19. M Salahuddin, H Saleem and M Saddiq, Phys. Rev. E 66, 036407 (2002)

    Article  ADS  Google Scholar 

  20. N A Krall and A W Trivelpiece, Principle of plasma physics (McGraw-Hill, New York, 1973) p. 106

    Google Scholar 

  21. S Ichimaru, A statistical approach, basic principle of plasma physics (Benjamin, New York, 1973) p. 77

    Google Scholar 

  22. R C Davidson, Methods in nonlinear plasma theory (Academic, New York, 1972) p. 15

    Google Scholar 

  23. F F Chen, Introduction to plasma physics and controlled fusion, 2nd edn (Plenum, New York, 1984) p. 297

    Book  Google Scholar 

  24. R A Truemann and W Baumjohann, Advanced space plasma physics (Imperial College, London, 1984) p. 243

    Google Scholar 

  25. S I Popel, S V Vladimirov and P K Shukla, Phys. Plasmas 2, 716 (1995)

    Article  ADS  Google Scholar 

  26. S Mahmood, A Mushtaq and H Saleem, New J. Phys. 5, 28.1 (2003)

  27. P Kaw and J Dawson, Phys. Fluids 13, 472 (1970)

    Article  ADS  Google Scholar 

  28. B Bhattacharyya, Phys. Rev.A 27, 568 (1983)

    Article  ADS  Google Scholar 

  29. T E Cowan, Nucl. Instrum. Methods Phys. Res. A 455 13 (2000)

    Article  Google Scholar 

  30. P K Shukla, M Y Yu and L N Tsintsadze, Phys. Fluids 27, 32 (1984)

    Google Scholar 

  31. J Arons, Space Sci. Rev. 24, 417 (1979)

    Article  ADS  Google Scholar 

  32. J I Vette, Summary of particle population in the magnetosphere, particles and fields in the magnetosphere (Reidel, Dordrecht, The Netherlands, 1970) p. 305

  33. C Grabbe, J. Geophys. Res. 94, 17299 (1989)

    Article  ADS  Google Scholar 

  34. G C Das and S N Paul, Phys. Fluids 28, 823 (1985).

    Article  ADS  Google Scholar 

  35. R P Lin, W K Levedahl and F L Scarf, Astrophys. J. 308, 954 (1986)

    Article  ADS  Google Scholar 

  36. H K Malik, IEEE Trans. Plasma Sci. 23, 813 (1985)

    Article  ADS  Google Scholar 

  37. R K Roychowdhury and S Bhattacharyya, Phys. Fluids 30, 258 (1987)

    Google Scholar 

  38. B B Kadomstev and V I Petviashvilli, Sov. Phys. J. 15, 539 (1970)

    Google Scholar 

  39. V E Zakharov and E A Kuznetsov, Sov. Phys. JETP 39, 285 (1974)

    ADS  Google Scholar 

  40. R Hide and P H Roberts, The origin of the mean geometric field in physics and chemistry of the Earth (Pergamon, New York, 1961) Vol. 4, p. 27

  41. A Mushtaq and H A Shah, Phys. Plasma 55, 072306 (2005)

    Article  ADS  Google Scholar 

  42. T Taniuti and C C Wei, J. Phys. Soc. Jpn. 24, 941 (1968)

    Article  ADS  Google Scholar 

  43. T Taniuti and N Yajima, J. Math. Phys. 10, 1369 (1969)

    Article  ADS  Google Scholar 

  44. A Jeffrey and T Kawahara, Asymptotic methods in nonlinear wave theory (Pitman, Boston, 1982)

    MATH  Google Scholar 

  45. E Infeld and G Rowlands, Nonlinear waves, solitons and chaos (Cambridge University Press, Cambridge, 1990) p. 107

    MATH  Google Scholar 

  46. Z Jun-Xiao and G Bo-Ling, Commun. Theor. Phys. 52, 279 (2009)

    Article  ADS  Google Scholar 

  47. A Sen, S Tiwari, S Mishra and P Kaw, Adv. Space Res. 56(3), 429 (2015)

  48. V S Aslanov and V V Yudintsev, Adv. Space Res. 55, 660 (2015)

    Article  ADS  Google Scholar 

  49. R Ali, A Saha and P Chatterjee, Phys. Plasmas 24, 122106 (2017)

    Article  ADS  Google Scholar 

  50. T K Das, R Ali and P Chatterjee, Phys. Plasmas 24, 103703 (2017)

    Article  ADS  Google Scholar 

  51. S Choudhuri, L Mandi and P Chatterjee, Phys. Plasmas 25, 042112 (2018)

    Article  ADS  Google Scholar 

  52. R Ali, A Saha and P Chatterjee, Z. Naturforsch. 73(2), 151 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashim Roy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raut, S., Mondal, K.K., Chatterjee, P. et al. Two-dimensional ion-acoustic solitary waves obliquely propagating in a relativistic rotating magnetised electron–positron–ion plasma in the presence of external periodic force. Pramana - J Phys 95, 73 (2021). https://doi.org/10.1007/s12043-021-02104-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02104-1

Keywords

PACS Nos

Navigation