Skip to main content
Log in

Effects of exchange symmetry and quantum diffraction on amplitude-modulated electrostatic waves in quantum magnetoplasma

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper we have made use of reductive perturbation technique (RPT) and carried out homotopy analysis method (HAM) to investigate the effect of exchange correlation and quantum diffraction on the electrostatic waves in quantum magnetoplasma. We have derived a nonlinear Schrödinger equation (NLSE) by using RPT that describes the spatiotemporal evolution of an initial waveform. Apart from this technique, we have made use of HAM to second our initial findings. It has been shown that both quantum diffraction H and parameter streaming velocity \(u_0\) have significant effects in determining the stability criteria and the growth or decay of any instability created therein. The stable parametric regimes are crucial from the experimental point of view as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Giora Shaviv, The life of stars: The controversial inception and emergence of the theory of stellar structure (Springer Science & Business Media, 2009)

  2. Norbert Straumann, arXiv:quant-ph/0403199 (2004)

  3. A G Truscott, K E Strecker, W I McAlexander, G B Partridge and R G Hulet. Science 291(5513), 2570 (2001)

    Article  ADS  Google Scholar 

  4. Arthur Stanley Eddington, Stellar movements and the structure of the Universe (Macmillan and Company Ltd., 1914)

  5. Arthur S Eddington, Report on the relativity theory of gravitation (Minkowski Institute Press, 2014)

  6. Arthur Stanley Eddington, Space, time and gravitation: An outline of the general theory of relativity (University Press, 1920)

  7. A S Eddington, J. British Astron. Soc. 98, 140 (1988)

  8. John D Norton, Rep. Prog. Phys. 56(7), 791 (1993)

  9. Robert W Smith, The expanding Universe: Astronomy’s’ great debate’, 1900–1931 (Cambridge University Press, 1982)

  10. R H Fowler, Mon. Not. R. Astron. Soc. 87(2), 114 (1926)

    Article  ADS  Google Scholar 

  11. Ralph H Fowler, Statistical mechanics: The theory of the properties of matter in equilibrium (University Press, 1929)

  12. Ralph Howard Fowler, The passage of electrons through surfaces and surface films: Being the thirty-first Robert Boyle Lecture, Delivered Before the Oxford University Junior Scientific Club on 18 May, 1929 (Oxford University Press, 1929) Vol. 31

  13. Ralph Howard Fowler and Edward Armand Guggenheim, Statistical thermodynamics. A Version of statistical mechanics [by RH Fowler] for students of physics and chemistry (Cambridge, 1939)

  14. Edward Arthur Milne, Thermodynamics of the stars, in: Handbuch der Astrophysik (Springer, 1930) pp. 65–255

  15. Edward Arthur Milne, Nature 135, 635 (1936)

  16. Edward Arthur Milne, Kinematic relativity: A sequel to relativity, gravitation and world structure (Oxford, 1948).

  17. Edward Arthur Milne, Vectorial mechanics (Methuen, 1948)

  18. Detlev Koester and Ganesar Chanmugam, Rep. Prog. Phys. 53(7), 837 (1990)

    Article  ADS  Google Scholar 

  19. S Chandrasekhar, Principles of stellar dynamics (Courier Corporation, 2005)

  20. S Chandrasekhar, Radiative transfer (Dever, New York, 1950)

    MATH  Google Scholar 

  21. S Chandrasekhar, Plasma physics (The University of Chicago Press, 1960) ISBN 978-0-226-10084-5

  22. S Chandrasekhar and Kip S Thorne, The mathematical theory of black holes (1985)

  23. S Chandrasekhar and S Chandrasekhar, An introduction to the study of stellar structure (Courier Corporation, 1957) Vol. 2

  24. F Haas, L G Garcia, J Goedert and G Manfredi, Phys. Plasmas 10(10), 3858 (2003)

    Article  ADS  Google Scholar 

  25. F Haas, Phys. Plasmas 12(6), 062117 (2005)

    Article  ADS  Google Scholar 

  26. G Manfredi and F Haas, Phys. Rev. B 64, 075316 (2001)

    Article  ADS  Google Scholar 

  27. Giovanni Manfredi, Fields Inst. Commun. 46, 263 (2005)

    Google Scholar 

  28. P K Shukla and S Ali, Phys. Plasmas 12(11), 114502 (2005)

    Article  ADS  Google Scholar 

  29. P K Shukla and B Eliasson, Phys. Rev. Lett. 96(24), 245001 (2006)

    Article  ADS  Google Scholar 

  30. Padma K Shukla and Bengt Eliasson, Physics-Uspekhi 53(1), 51 (2010)

  31. Swarniv Chandra, Jyotirmoy Goswami, Jit Sarkar and Chinmay Das, J. Korean Phys. Soc. 76, 469 (2020)

    Article  ADS  Google Scholar 

  32. Chinmay Das, Swarniv Chandra and Basudev Ghosh, Contrib. Plasma Phys. 60, e202000028 (2020)

  33. Pavel A Andreev, Ann. Phys. 350, 198 (2014)

  34. E A Kuznetsov, A M Rubenchik and V E Zakharov, Phys. Rep. 142(3), 103 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  35. L S Kuz’menkov, S G Maksimov and V V Fedoseev, Theor. Math. Phys. 126, 212 (2001)

    Article  Google Scholar 

  36. Alexander Fedoseev, Mikhail Isupov, Gennadiy Sukhinin, Vadim Pinaev, Nikon Demin and Mikhail Salnikov, Jpn. J. Appl. Phys. 59(SH), SHHC02 (2020)

  37. A V Fedoseev, G I Sukhinin, T S Ramazanov, S K Kodanova and N H Bastykova, Thermophys. Aeromech. 18(4), 615 (2011)

    Article  ADS  Google Scholar 

  38. L D Faddeev and L A Takhtajan, Hamiltonian methods in the theory of solitons (Springer, Berlin, Heidelberg, 2007)

  39. Catherine Sulem and Pierre-Louis Sulem, The nonlinear Schrödinger equation: Self-focusing and wave collapse (Springer Science & Business Media, 2007) Vol. 139

  40. Roger Dodd et al, Bull. (New Series) Am. Math. Soc. 19(2), 565 (1988)

  41. Amar P Misra and Chandan Bhowmik, Phys. Plasmas 14(1), 012309 (2007)

  42. Amar P Misra and A Roy Chowdhury, Phys. Plasmas 13(7), 072305 (2006)

  43. C Bhowmik, A P Misra and P K Shukla, Phys. Plasmas 14(12), 122107 (2007)

    Article  ADS  Google Scholar 

  44. Jyotirmoy Goswami, Swarniv Chandra and Basudev Ghosh, Astrophys. Space Sci. 364(4), 65 (2019)

    Article  ADS  Google Scholar 

  45. Jyotirmoy Goswami, Swarniv Chandra and B Ghosh, Laser Part. Beams 36(1), 136 (2018)

  46. J Sarkar, J Goswami, S Chandra and B Ghosh, Laser Part. Beams 35(4), 641 (2017)

    Article  ADS  Google Scholar 

  47. Jit Sarkar, Swarniv Chandra, Jyotirmoy Goswami and Basudev Ghosh, Contrib. Plasma Phys. 60, e201900202 (2020)

  48. A K Singh and S Chandra, Laser Part. Beams 35(2), 252 (2017)

    Article  ADS  Google Scholar 

  49. A K Singh and S Chandra, Afr. Rev. Phys. 12, 84 (2017)

    Google Scholar 

  50. I Paul, S Chandra, S Chattopadhyay and S N Paul, Indian J. Phys. 90(10), 1195 (2016)

    Article  ADS  Google Scholar 

  51. Basudev Ghosh, Swarniv Chandra and Sailendra Nath Paul, Pramana – J. Phys. 78(5), 779 (2012)

  52. Basudev Ghosh, Swarniv Chandra and S N Paul, Phys. Plasmas 18(1), 012106 (2011)

  53. H Sahoo, S Chandra and B Ghosh, Afr. Rev. Phys. 10, 235, 2015.

  54. Swarniv Chandra, Sailendra Nath Paul and Basudev Ghosh, IJPAP 50, 314 (2012)

  55. Swarniv Chandra and Basudev Ghosh, IJPAP 51, 627 (2013)

  56. Swarniv Chandra, Sailendra Nath Paul and Basudev Ghosh, Astrophys. Space Sci. 343(1), 213 (2013)

  57. S Chandra and B Ghosh, Astrophys. Space Sci. 342, 417 (2012)

    Article  ADS  Google Scholar 

  58. L Brey, Jed Dempsey, Neil F Johnson and B I Halperin, Phys. Rev. B 42(2), 1240 (1990)

  59. Chinmay Das, Swarniv Chandra and Basudev Ghosh, Plasma Phys. Control. Fusion 63(1), 015011 (2020)

Download references

Acknowledgements

The authors would like to thank the unknown reviewers for their time and effort in providing valuable input and pointing out some issues that improved the quality of this paper. The authors also would like to thank Institute of Natural Sciences and Applied Technology as well as the Physics Departments of Jadavpur University and Government General Degree College at Kushmandi for providing facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swarniv Chandra.

Appendix

Appendix

1.1 Appendix I(A)

1.1.1 \(n=\mathrm{1}\), \(l=\mathrm{1}\) perturbation relations

$$\begin{aligned}&-i\omega \gamma _1 n_{e,1}^{(1)} +ik\gamma _1 v_{e,1}^{(1)} + ik \gamma _1 u_0 n_{e,1}^{(1)}=0,\nonumber \\&\quad -i\omega n_{i,1}^{(1)} + ik v_{i,1}^{(1)}=0,\nonumber \\&\quad - ik\varphi _{1}^{(1)}- \frac{ {v}_{e\perp ,1 }^{(1)}}{\rho _s} +\frac{i k \lambda _1}{3} n_{e,1}^{(1)} -\frac{2 i k \lambda _2 }{3} n_{e,1}^{(1)}\nonumber \\&\quad \quad \quad \quad \quad + i\frac{H^2}{4\gamma _3 }k^3 n_{e,1}^{(1)}=0 ,\nonumber \\&\quad -i\omega v_{i,1}^{(1)} + ik\varphi _{1}^{(1)} +i k n_{i,1}^{(1)} =0,\nonumber \\&\quad -k^2 \varphi _{1}^{(1)} - n_{e,1}^{(1)} + n_{i,1}^{(1)} = 0 . \end{aligned}$$
(39)

1.1.2 \(n=1\), \(l=1\) perturbation coefficients

$$\begin{aligned}&A_{11}=\frac{k^4+k^2-\omega ^2 k^2}{\omega ^2-k^2} , \nonumber \\&B_{11}=\frac{k^2}{\omega ^2-k^2}, \nonumber \\&C_{11}=\left( \frac{\omega -ku_0}{k }\right) \left( \frac{k^4+k^2-\omega ^2 k^2}{\omega ^2-k^2}\right) ,\nonumber \\&D_{11}=\frac{\omega k}{\omega ^2-k^2}. \end{aligned}$$
(40)

1.2 Appendix I(B)

1.2.1 \(n=2\), \(l=1\) perturbation relations

$$\begin{aligned}&-C_g \gamma _1 \frac{\partial {n}_{e,1}^{(1)}}{\partial \xi } - i\omega \gamma _2 n_{e,1}^{(2)} + \gamma _1 \frac{\partial {v}_{e,1}^{(1)}}{\partial \xi } \nonumber \\&\qquad + ik \gamma _2 v_{e,1}^{(2)} + u_0 \gamma _1 \frac{\partial {n}_{e,1}^{(1)}}{\partial \xi } + iku_0 \gamma _2 n_{e,1}^{(2)} = 0 ,\nonumber \\&\qquad -C_g \frac{\partial {n}_{i,1}^{(1)}}{\partial \xi } - i\omega n_{i,1}^{(2)} + \frac{\partial {v}_{i,1}^{(1)}}{\partial \xi } + ik v_{i,1}^{(2)}=0 ,\nonumber \\&-\frac{\partial {\varphi }_{1}^{(1)}}{\partial \xi } - ik\varphi _{1}^{(2)}\nonumber \\&\qquad + \frac{\lambda _1}{3}\left( ik n_{e,1}^{(2)} + \frac{\partial {n}_{e,1}^{(1)}}{\partial \xi }\right) \nonumber \\&\qquad - \frac{2 \lambda _2}{3}\left( ik n_{e,1}^{(2)} + \frac{\partial {n}_{e,1}^{(1)}}{\partial \xi }\right) \nonumber \\&\qquad - \frac{H^2}{2\gamma _3 } \left( -\frac{ik^3}{2} {n}_{e,1}^{(2)} -3k^2 \frac{\partial {n}_{e,1}^{(1)}}{\partial \xi }\right) = 0,\nonumber \\&-C_g \frac{\partial {v}_{i,1}^{(1)}}{\partial \xi } - i\omega v_{i,1}^{(2)} + \frac{\partial {\varphi }_{1}^{(1)}}{\partial \xi } + ik \varphi _{1}^{(2)} \nonumber \\&\qquad + \frac{\partial {n_{i,1}}^{(1)}}{\partial \xi } + ik n_{i,1}^{(2)} =0 , \nonumber \\&2ik\frac{\partial {\varphi }_{1}^{(1)}}{\partial \xi } - k^2 \varphi _{1}^{(2)} -{n}_{e,1}^{(2)} + {n}_{i,1}^{(2)} = 0 . \end{aligned}$$
(41)

1.2.2 \(n=2\), \(l=1\) perturbation coefficients

$$\begin{aligned}&A_{21}^{\prime }=\frac{12\gamma _3 k}{4\lambda _1 \gamma _3-8\lambda _2 \gamma _3+3H^2k^2},\nonumber \\&A_{21}^{\prime \prime }=2iA_{11}\frac{\gamma _3\left( -6+2\lambda _1 -4\lambda _2 \right) +9H^2k^2}{k\left( 4\gamma _3\lambda _1 -8\gamma _3\lambda _2+3H^2k^2 \right) }, \end{aligned}$$
(42)
$$\begin{aligned}&B_{21}^{\prime }= \frac{k^2}{\omega (\omega -k)},\nonumber \\&B_{21}^{\prime \prime }=i\frac{k(1{-}C_g D_{11}{+}B_{11}){-}\left( k{-}\omega \right) (C_g B_{11}{-}D_{11})}{\omega \left( k{-}\omega \right) },\nonumber \\&C_{21}^{\prime }=\frac{\gamma _1\left( \omega -ku_0\right) A_{21}^{\prime }}{k\gamma _2},\nonumber \\&C_{21}^{\prime \prime }=\frac{k\gamma _2 A_{21}^{\prime \prime }+i\gamma _1(-C_gA_{11}+C_{11}+u_0 A_{11})}{k\gamma _2} \nonumber \\&D_{21}^{\prime }=\frac{\omega B_{21}^{\prime } }{k},\nonumber \\&D_{21}^{\prime \prime }=\frac{B_{21}^{\prime \prime }+i(C_gB_{11}-D_{11})}{k},\nonumber \\&E_{21}^{\prime }= \frac{2ik-A_{21}^{\prime \prime }+B_{21}^{\prime \prime }}{k^2+A_{21}^{\prime }-B_{21}^{\prime }},\nonumber \\&iA_{21}=A_{21}^{\prime }E_{21} +A_{21}^{\prime \prime }, \nonumber \\&iB_{21}=B_{21}^{\prime }E_{21}+B_{21}^{\prime \prime }, \nonumber \\&iC_{21}=C_{21}^{\prime }E_{21}+C_{21}^{\prime \prime }, \nonumber \\&iD_{21}=D_{21}^{\prime }E_{21}+D_{21}^{\prime \prime },\nonumber \\&iE_{21}=E_{21}^{\prime }. \end{aligned}$$
(43)

1.3 Appendix I(C)

1.3.1 \(n=2\), \(l=2\) perturbation relations

$$\begin{aligned}&-C_g \gamma _1\frac{\partial {n}_{e,2}^{(1)}}{\partial \xi } - 2i\omega \gamma _2 n_{e,2}^{(2)} \nonumber \\&\quad + \gamma _1 \frac{\partial {v}_{e,2}^{(1)}}{\partial \xi } + 2ik \gamma _2 v_{e,2}^{(2)} \nonumber \\&\quad + u_0\gamma _1 \frac{\partial {n}_{e,2}^{(1)}}{\partial \xi } + 2i ku_0 \gamma _2 n_{e,2}^{(2)}\nonumber \\&\quad +2ik{\gamma _1}^2{n}_{e,1}^{(1)}{v}_{e,1}^{(1)} {\,=\,} 0 ,\nonumber \\&-C_g \frac{\partial {n}_{i,2}^{(1)}}{\partial \xi } - 2i\omega n_{i,2}^{(2)} \nonumber \\&\quad + \frac{\partial {v}_{i,2}^{(1)}}{\partial \xi } + 2ik v_{i,2}^{(2)}+2ik{n}_{i,1}^{(1)}{v}_{i,1}^{(1)}=0 ,\nonumber \\&- \frac{\partial {\varphi }_{2}^{(1)}}{\partial \xi } - 2ik\varphi _{2}^{(2)} + \frac{\lambda _1}{3} \left( 2ik n_{e,2}^{(2)} + \frac{\partial {n}_{e,2}^{(1)}}{\partial \xi }\right) \nonumber \\&\quad - \frac{2 \lambda _2}{3} \left( 2ik n_{e,2}^{(2)} + \frac{\partial {n}_{e,2}^{(1)}}{\partial \xi }\right) \nonumber \\&\quad - \frac{H^2}{2\gamma _3 } \left( -4ik^3 {n}_{e,2}^{(2)} -4k^2 \frac{\partial {n}_{e,2}^{(1)}}{\partial \xi }\right) =0,\nonumber \\&-C_g \frac{\partial {v}_{i,2}^{(1)}}{\partial \xi } - 2i\omega v_{i,2}^{(2)} + \frac{\partial {\varphi }_{2}^{(1)}}{\partial \xi } + 2ik \varphi _{2}^{(2)} \nonumber \\&\quad + \frac{\partial {n_{i,2}^{(1)}}}{\partial \xi } + 2ik n_{i,2}^{(2)}+ 2ik{v}_{i,1}^{(1)}{v}_{i,1}^{(1)} =0, \nonumber \\&4ik\frac{\partial {\varphi }_{2}^{(1)}}{\partial \xi } - 4k^2 \varphi _{2}^{(2)} -{n}_{e,2}^{(2)}\nonumber \\&\quad + {n}_{i,2}^{(2)}-\frac{1}{2}\varphi _{1}^{(1)}.\varphi _{1}^{(1)} = 0 . \end{aligned}$$
(44)

1.3.2 \(n=2\), \(l=2\) perturbation coefficients

$$\begin{aligned}&E_{22}=\frac{2kD_{11}(\omega B_{11}{+}kD_{11}){-}1}{2(\omega ^2 {-} k^2)\left( 4k^2{+}\frac{3\gamma _3}{\gamma _3(\lambda _1{-}2\lambda _2){+}3H^2k^2}{-}\frac{k^2}{\omega ^2{-}k^2}\right) },\nonumber \\&A_{22}=\frac{3\gamma _3 E_{22}}{\gamma _3(\lambda _1-2\lambda _2)+3H^2k^2},\nonumber \\&B_{22}=\frac{kD_{11}(\omega B_{11}+kD_{11})+k^2E_{22}}{\omega ^2-k^2}, \nonumber \\&C_{22}=\frac{A_{22}(\omega -ku_0)+k A_{11}C_{11}}{k},\nonumber \\&D_{22}=\frac{\omega B_{22}}{k} - B_{11}D_{11}. \end{aligned}$$
(45)

1.4 Appendix I(D)

1.4.1 \(n=3\), \(l=0\) perturbation relations

$$\begin{aligned}&\gamma _1\frac{\partial {n}_{e,0}^{(1)}}{\partial \tau }-C_g \gamma _2\frac{\partial {n}_{e,0}^{(2)}}{\partial \xi } + \gamma _2 \frac{\partial {v}_{e,0}^{(2)}}{\partial \xi } + u_0 \gamma _2\frac{\partial {n}_{e,0}^{(2)}}{\partial \xi } = 0 ,\nonumber \\&\frac{\partial {n}_{i,0}^{(1)}}{\partial \tau } - C_g \frac{\partial {n}_{i,0}^{(2)}}{\partial \xi } + \frac{\partial {v}_{i,0}^{(2)}}{\partial \xi } =0 ,\nonumber \\&- \frac{\partial {\varphi }_{0}^{(2)}}{\partial \xi } +\frac{\lambda _1}{3} \left( \frac{\partial {n}_{e,0}^{(2)}}{\partial \xi } \right) - \frac{2 \lambda _2}{3}\left( \frac{\partial {n}_{e,0}^{(2)}}{\partial \xi } \right) =0 ,\nonumber \\&\frac{\partial {v}_{i,0}^{(1)}}{\partial \tau } - C_g \frac{\partial {v}_{i,0}^{(2)}}{\partial \xi } + \frac{\partial {\varphi }_{0}^{(2)}}{\partial \xi } + \frac{\partial {n}_{i,0}^{(2)}}{\partial \xi } =0,\nonumber \\&\frac{\partial ^2 {\varphi }_{0}^{(1)}}{\partial \xi ^2} -{n}_{e,0}^{(3)} + {n}_{i,0}^{(3)}-| \varphi _{1}^{(1)}| ^2 = 0 . \end{aligned}$$
(46)

1.4.2 \(n=2\), \(l=0\) perturbation coefficients

$$\begin{aligned} E_{20}= & {} \frac{(C_g^2-1)\left( \lambda _1-2\lambda _2\right) }{\left( \lambda _1-2\lambda _2\right) -3(C_g^2-1)},\nonumber \\ A_{20}= & {} \frac{3 E_{20}}{\lambda _1-2\lambda _2},\nonumber \\ B_{20}= & {} \frac{E_{20}}{C_g^2-1}, \end{aligned}$$
(47)
$$\begin{aligned} C_{20}= & {} \frac{3(C_g-u_0)E_{20}}{ \left( \lambda _1-2\lambda _2\right) },\nonumber \\ D_{20}= & {} \frac{C_g E_{20}}{C_g^2-1}. \end{aligned}$$
(48)

1.5 Appendix I(D)

1.5.1 \(n=3\), \(l=1\) perturbation relations

$$\begin{aligned}&\gamma _1\frac{\partial {n}_{e,1}^{(1)}}{\partial \tau }-C_g \gamma _2 \frac{\partial {n}_{e,1}^{(2)}}{\partial \xi } - i\omega \gamma _3 n_{e,1}^{(3)} \nonumber \\&\qquad + \gamma _2 \frac{\partial {v}_{e,1}^{(2)}}{\partial \xi } + ik \gamma _3 v_{e,1}^{(3)} + u_0 \gamma _2\frac{\partial {n}_{e,1}^{(2)}}{\partial \xi } + i k u_0 \gamma _3 n_{e,1}^{(3)} \nonumber \\&\qquad +ik\gamma _1\gamma _2\left[ n_{e,1}^{(1)}.v_{e,0}^{(2)}+n_{e,-1}^{(1)}.v_{e,2}^{(2)}\right. \nonumber \\&\qquad \left. +n_{e,0}^{(2)}.v_{e,1}^{(1)} +n_{e,2}^{(2)}.v_{e,-1}^{(1)} \right] = 0 ,\nonumber \\&\quad \frac{\partial {n}_{i,1}^{(1)}}{\partial \tau } - C_g \frac{\partial {n}_{i,1}^{(2)}}{\partial \xi } - i\omega n_{i,1}^{(3)} + \frac{\partial {v}_{i,1}^{(2)}}{\partial \xi } \nonumber \\&\qquad + ik v_{i,1}^{(3)} + ik\left[ n_{i,1}^{(1)}.v_{i,0}^{(2)}+n_{i,-1}^{(1)}.v_{i,2}^{(2)}\right. \nonumber \\&\qquad \left. +n_{i,0}^{(2)}.v_{i,1}^{(1)} +n_{i,2}^{(2)}.v_{i,-1}^{(1)} \right] = 0 ,\nonumber \\&\qquad -\frac{\partial {\varphi }_{1}^{(2)}}{\partial \xi } - ik \varphi _{1}^{(3)} \nonumber \\&\qquad + \frac{\lambda _1}{3} \left( ik n_{e,1}^{(3)} + \frac{\partial {n}_{e,1}^{(2)}}{\partial \xi } \right) \nonumber \\&\qquad - \frac{2 \lambda _2}{3}\left( ik n_{e,1}^{(3)} + \frac{\partial {n}_{e,1}^{(2)}}{\partial \xi } \right) \nonumber \\&\qquad - \frac{H^2}{2\gamma _3 } \left( -\frac{ik^3}{2}{n}_{e,1}^{(3)} - 3k^2\frac{\partial {n}_{e,1}^{(2)}}{\partial \xi } +ik \frac{\partial ^2 {n}_{e,1}^{(1)}}{\partial \xi ^2}\right) =0 , \nonumber \\&\qquad \frac{\partial {v}_{i,1}^{(1)}}{\partial \tau } - C_g \frac{\partial {v}_{i,1}^{(2)}}{\partial \xi } -i\omega v_{i,1}^{(3)} \nonumber \\&\qquad + \frac{\partial {\varphi }_{1}^{(2)}}{\partial \xi } + ik \varphi _{1}^{(3)} +\frac{\partial {n}_{i,1}^{(2)}}{\partial \xi } +ik{n}_{i,1}^{(3)} \nonumber \\&\qquad +ik\left[ 2v_{i,-1}^{(1)}.v_{i,2}^{(2)} + v_{i,0}^{(2)}.v_{i,1}^{(1)}-v_{i,2}^{(2)}.v_{i,-1}^{(1)}\right] =0,\nonumber \\&\qquad \frac{\partial ^2 {\varphi }_{1}^{(1)}}{\partial \xi ^2} + 2ik\frac{\partial {\varphi }_{1}^{(2)}}{\partial \xi } - k^2 \varphi _{1}^{(3)} -{n}_{e,1}^{(3)} \nonumber \\&\qquad + {n}_{i,1}^{(3)} -\left[ \varphi _{1}^{(1)}.\varphi _{0}^{(2)} + \varphi _{-1}^{(1)}.\varphi _{2}^{(2)}\right] = 0 . \end{aligned}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, C., Chandra, S. & Ghosh, B. Effects of exchange symmetry and quantum diffraction on amplitude-modulated electrostatic waves in quantum magnetoplasma. Pramana - J Phys 95, 78 (2021). https://doi.org/10.1007/s12043-021-02108-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02108-x

Keywords

PACS Nos

Navigation