Skip to main content
Log in

Optimum culture medium composition for lipopeptide production by Bacillus subtilis using response surface model-based ant colony optimization

  • Published:
Sadhana Aims and scope Submit manuscript

Abstract

Central composite rotatable design (CCRD) of experiments was used to obtain data for Lipopeptide and Biomass concentrations from fermentation medium containing the following five components: glucose, monosodium glutamate, yeast extract, MgSO4⋅7H2O, and K2HPO4. Data was used to develop a second order regression response surface model (RSM) which was coupled with ant colony optimization (ACO) to optimize the media compositions so as to enhance the productivity of lipopeptide. The optimized media by ACO was found to yield 1.501 g/L of lipopeptide concentration which was much higher compared to 1.387 g/L predicted by Nelder–Mead optimization (NMO). The optimum from ACO was validated experimentally. RSM-based ACO is thus shown to be an effective tool for medium optimization of biosurfactant production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Desai J D and Banat I M 1997 Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. R. 61 (1): 47–64

    Google Scholar 

  2. Abdel-Mawgoud A M, Lépine F and Déziel E 2010 Rhamnolipids: Diversity of structures, microbial origins, and roles. Appl. Microbiol. Biot. 86 (1): 323–1336

    Google Scholar 

  3. Morikawa M, Hirata Y and Imanaka T 2000 A study on the structure–function relationship of lipopeptide biosurfactants. BBA-Mol. Cell Biol. L. 1488 (3): 211–218

    Google Scholar 

  4. Peypoux F, Bonmatin J M and Wallach J 1999 Recent trends in the biochemistry of surfactin. Appl. Microbiol. Biot. 51 (5): 553–563

    Article  Google Scholar 

  5. Haddad N I, Liu X, Yang S and Mu B 2008 Surfactin isoforms from bacillus subtilus HSO121: Separation and characterization. Protein. Peptide Lett. 15 (3): 265–269

    Article  Google Scholar 

  6. Tang J, Gao H, Hong K, Yu Y, Jiang M and Lin H 2007 Complete assignments of 1H and 13C NMR spectral data of nine surfactin isomers. Magn. Reson. Chem. 45 (9): 792–796

    Article  Google Scholar 

  7. Cameotra S S and Makkar R S 2004 Recent applications of biosurfactants as biological and immunological molecules. Curr. Opin. Microbiol. 7 (3): 262–66

    Article  Google Scholar 

  8. Abalos A, Maximo F, Manresa M A and Bastida J 2002 Utilization of response surface methodology to optimize the culture media for the production of rhamnolipids by Pseudomonas Aeruginosa AT10. J. Chem. Technol. Biot. 77: 777–784

    Article  Google Scholar 

  9. Al-Araji L I Y, Abd-Rahman R N Z R, Basri M and Salleh A B 2007 Optimization of rhamnolipids produced by Pseudomonas aeruginosa 181 using response surface modeling. Ann. Microbiol. 57 (4): 571–575

    Article  Google Scholar 

  10. Rispoli F J, Badia D and Shah V 2010 Optimization of the fermentation media for sophorolipid production from Candida bombicola ATCC 22214 using a simplex centroid design. Biotechnol. Progr. 26 (4): 938–944

    Google Scholar 

  11. Rikalović M G, Gojgić-cvijović G, Vrvić M M and Karadzic I 2012 Production and characterization of rhamnolipids from Pseudomonas Aeruginosa-AI. J. Serb. Chem. Soc. 77: 27–42

    Article  Google Scholar 

  12. Suwansukho P, Rukachisirikul V, Kawai F and H-Kittikun A 2008 Production and applications of biosurfactant from Bacillus subtilis MUV4, Songklanakarin. J. Sci. Technol. 30 (Suppl 1): 87–93

    Google Scholar 

  13. Gu X, Zheng Z, Yu H, Wang J, Liang F and Liu R 2005 Optimization of medium constituents for a novel lipopeptide production by Bacillus Subtilis MO-01 by a response surface method. Process Biochem. 40 (10): 3196–3201

    Article  Google Scholar 

  14. Abdel-Mawgoud M, Aboulwafa M M and Hassouna N A 2008 Optimization of surfactin production by bacillus subtilis isolate BS5. Appl. Biochem. Biotech. 150: 305–325

    Article  Google Scholar 

  15. Liu X, Ren B, Gao H, Liu M, Dai H, Song F, Yu Z, Wang S, Hu J, Kokare C R and Zhang L 2012 Optimization for the production of surfactin with a new synergistic antifungal activity. PLoS ONE 7 (5): e34430

    Article  Google Scholar 

  16. Mutalik S R, Vaidya B K, Joshi R M, Desai K M and Nene S N 2008 Use of response surface optimization for the production of biosurfactant from Rhodococcus spp. MTCC 2574. Bioresource Technol. 99 (10): 7875–7880

    Article  Google Scholar 

  17. Seghal Kiran S, Anto-Thomas T, Joseph S, Sabarathnam B and Lipton A P 2010 Optimization and characterization of a new biosurfactant produced by marine Brevibacterium aureum MSA 13 in solid state culture. Bioresource Technol. 101: 2389–2396

    Article  Google Scholar 

  18. De Lima C J, Ribeiro E J, Servulo E F, Resende M M and Cardoso V L 2009 Biosurfactant production by Pseudomonas aeruginosa grown on residual soybean oil. Appl. Biochem. Biotech. 152 (1): 156–168

    Article  Google Scholar 

  19. Pal M P, Vaidya B K, Desai K M, Joshi R M, Nene S N and Kulkarni B D 2009 Media optimization for biosurfactant production by Rhodococcuserythropolis MTCC 2794: Artificial intelligence versus a statistical approach. J. Ind. Microbiol. Biot. 36: 747–756

    Article  Google Scholar 

  20. Satya Eswari J, Anand M and Venkateswarlu C 2013 Optimum culture medium composition for Rhamnolipid production by Pseudomonas Aeruginosa AT10 using a novel multi-objective optimization method. J. Chem. Technol. Biot. 88 (2): 271–279

    Article  Google Scholar 

  21. Chen L Z, Nguang S K, Chen X D and Li X M 2004 Modeling and optimization of fed-batch fermentation processes using dynamical neural networks and genetic algorithms. Biochem. Eng. J. 22 (1): 51–61

    Article  Google Scholar 

  22. Deb K 2001 Multi-objective optimization using evolutionary algorithms. New York: John Wiley & Sons

    MATH  Google Scholar 

  23. Shopova E G and Vaklieva-Bancheva N G 2006 BASIC-A genetic algorithm for engineering problem solution. Comput. Chem. Eng. 30 (8): 1293–1309

    Article  Google Scholar 

  24. Faber R, Jockenhovel T and Tsatsaronis G 2005 Dynamic optimization with simulated annealing. Comput. Chem. Eng. 29: 273–290

    Article  Google Scholar 

  25. Kirkpatrick S, Gelatt Jr. C D and Vecchi M P 1983 Optimization by simulated annealing. Science 220 (4598): 671–680

    Article  MathSciNet  MATH  Google Scholar 

  26. Blum C 2005 Beam-ACO- hybridizing ant colony optimization with beam search: An application to open shop scheduling. Comput. Oper. Res. 32 (6): 1565–1591

    Article  MATH  Google Scholar 

  27. Dorigo M, Birattari M and Stutzle T 2006 Ant colony optimization. IEEE Comput. Intell. Mag. 1 (4): 28–39

    Article  Google Scholar 

  28. Socha K, Sampels M and Manfrin M 2003 Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. Proceedings of the Third European Workshop on Evolutionary Computation in Combinatorial Optimization, Essex: UK, pp. 334–345

  29. Parsopoulos K E and Vrahatis 2002 Recent approaches to global optimization problems through particle swarm optimization. Nat. Comput. 1 (2–3): 235–306

    Article  MathSciNet  MATH  Google Scholar 

  30. Anand P, Bhagvanth Rao M and Venkateswarlu C 2013 Multi-stage dynamic optimization of a copolymerization reactor using differential evolution. Asia Pac. J. Chem. Eng. 8 (5): 687–698

    Article  Google Scholar 

  31. Satya Eswari J and Venkateswarlu C 2012 Optimization of culture conditions for Chinese Hamster Ovary (CHO) cells production using differential evolution. Int. J. Pharm. Pharm. Sci. 4 (1): 465–470

    Google Scholar 

  32. Dorigo M, Maniezzo V and Colorni A 1996 Ant system: Optimization by a colony of cooperating agents. IEEE. Trans. Syst. Man Cybern. B: Cybern. 26 (1): 29–41

    Article  Google Scholar 

  33. Dorigo M and DiCaro G 1999 The ant colony meta-heuristic in “New Ideas in Optimization”. New York: McGraw-Hill

    Google Scholar 

  34. Dorigo M, Bonabeau E and Theraulaz G 2000 Ant algorithms and stigmergy. Future Gener. Comp. Syst. 16 (8): 851–871

    Article  Google Scholar 

  35. Guerra-Santos L, Kappeli O and Fiechter A 1984 Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Appl. Environ. Microb. 48 (2): 301–305

    Google Scholar 

  36. Wei Q F, Mather R R and Fotheringham A F 2005 Oil removal from used sorbents using a biosurfactant. Bioresource Technol. 96 (3): 331–334

    Article  Google Scholar 

  37. Cameotra S S and Makkar R S 1998 Synthesis of biosurfactants in extreme conditions. Appl. Microbiol. Biot. 50: 520–529

    Article  Google Scholar 

  38. Kuester J L and Mize J H 1973 Optimization techniques with Fortran. New York: McGraw-Hill

    MATH  Google Scholar 

  39. Satya Eswari J and Venkateswarlu C 2013 Evaluation of anaerobic biofilm reactor kinetic parameters using ant colony optimization. Environ. Eng. Sci 30 (9): 527–535

    Article  Google Scholar 

  40. Venkateswarlu C and Gangiah K 1992 Dynamic modeling and optimal state estimation using extended Kalman filter for a kraft pulping digester. Ind. Eng. Chem. Res. 31 (3): 848–855

    Article  Google Scholar 

Download references

Acknowledgements

Financial assistance from DST through the grant SR/WOSA/ET-20/2009 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M ANAND.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ESWARI, J.S., ANAND, M. & VENKATESWARLU, C. Optimum culture medium composition for lipopeptide production by Bacillus subtilis using response surface model-based ant colony optimization. Sadhana 41, 55–65 (2016). https://doi.org/10.1007/s12046-015-0451-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-015-0451-x

Keywords

Navigation