Skip to main content

Advertisement

Log in

Electromagnetic energy harvester for harvesting acoustic energy

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

This paper reports a suspended coil, electromagnetic acoustic energy harvester (AEH) for extracting acoustical energy. The developed AEH comprises Helmholtz resonator (HR), a wound coil bonded to a flexible membrane and a permanent magnet placed in a magnet holder. The harvester’s performance is analyzed under different sound pressure levels (SPLs) both in laboratory and in real environment. In laboratory, when connected to 50 Ω load resistance and subjected to an SPL of 100 dB, the AEH generated a peak load voltage of 198.7 mV at the resonant frequency of 319 Hz. When working under the optimum load resistance, the AEH generated an optimum load power of 789.65 µW. In real environment, the developed AEH produced a maximum voltage of 25 mV when exposed to the acoustic noise of a motorcycle and generated an optimum voltage of 60 mV when it is placed in the surroundings of a domestic electrical generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Khan F and Izhar 2015 State of the art in acoustic energy harvesting. J. Micromech. Microeng. 25: 023001 doi:10.1088/0960-1317/25/2/023001

    Article  Google Scholar 

  2. Khan F, Sassani F and Stoeber B 2010 Copper foil-type vibration-based electromagnetic energy harvester. J. Micromech. Microeng. 20: 125006

    Article  Google Scholar 

  3. Gilbert J M and Balouchi F 2008 Comparison of energy harvesting systems for wireless sensor networks. Int. J. Autom. Comput. 5: 334–347

    Article  Google Scholar 

  4. Roundy S, Wright P and Rabaey J 2004 Energy scavenging for wireless sensor networks: With special focus on vibrations. Kluwer Academic Publishers, Norwell, MA, USA

    Book  Google Scholar 

  5. Tan Y K and Panda S K 2007 A novel piezoelectric based wind energy harvester for low-power autonomous wind speed sensor. IECON 2007 – 33rd Annu. Conf. IEEE Ind. Electron. Soc.

  6. Kang T, Fang S, Kozlov M E, Haines C S, Li N, Kim Y H, Chen Y and Baughman R H 2012 Electrical power from nanotube and graphene electrochemical thermal energy harvesters. Adv. Funct. Mater. 22: 477–489. doi:10.1002/adfm.201101639

    Article  Google Scholar 

  7. Elfrink R, Kamel T M, Goedbloed M, Matova S, Hohlfeld D, Andel Y and Schaijk R 2009 Vibration energy harvesting with aluminum nitride-based piezoelectric devices. J. Micromech. Microeng. 19: 094005

    Article  Google Scholar 

  8. Khan F, Sassani F and Stoeber B 2013 Nonlinear behaviour of membrane type electromagnetic energy harvester under harmonic and random vibrations. Microsyst. Technol. 19(9): 1–13

    Google Scholar 

  9. Khan F, Stoeber B and Sassani F 2014a Modeling and simulation of linear and nonlinear MEMS scale electromagnetic 452 energy harvesters for random vibration environments. Sci. World J. 2014: 74258 doi:10.1155/2014/742580

    Google Scholar 

  10. Georgiadis A, Collado A, Via S and Meneses C 2011 Flexible hybrid solar/EM energy harvester for autonomous sensors. Proc. 2011 IEEE MTT-S Int. Microw. Symp. Baltimore, Maryland, USA, pp. 1–4

  11. Chang S H, Wu H W and Hung C F 2013 A sound quality study of domestic electrical appliances by jury test in indoor space. Open Acoust. J. 6: 11–19 doi:10.2174/1874837601306010011

    Article  Google Scholar 

  12. Hu X, Aoki T and Tokura N 2012 The feature of weak shock wave propagated in a overlong tunnel. Open J. Fluid Dyn. 2: 285–289

    Article  Google Scholar 

  13. Bartlett M L and Wilson G R 2002 Characteristics of small boat signatures. J. Acoust. Soc. Am. 112: 2221.

    Article  Google Scholar 

  14. Grujić S, Mihailović A, Kiurski J, Adamović S and Adamović D 2011 Noise level investigation in printing industry in Novi Sad, Serbia. Int. J. Environ. Earth Sci. Eng. 05(4): 224–226

  15. Bedi R 2006 Evaluation of occupational environment in two textile plants in Northern India with specific reference to noise. Ind. Health 44: 112–116

    Article  Google Scholar 

  16. Khan F and Izhar 2013 Acoustic-based electrodynamic energy harvester for wireless sensor nodes application. Int. J. Mater. Sci. Eng. 1: 72–78

  17. Horowitz S B, Sheplak M, Cattafesta L N and Nishida T 2006 A MEMS AEH. J. Micromech. Microeng. 16: 174–181

    Article  Google Scholar 

  18. Peng X, Wen Y, Li P, Yang A and Bai X 2013 A wideband AEH using a three degree-of-freedom architecture. Appl. Phys. Lett. 103: 164106

    Article  Google Scholar 

  19. Kimura S, Sugou T, Tomioka S, Iizumi S, Tsujimoto K and Yasushiro N 2011 AEH fabricated using sol/gel lead zirconate titanate thin film. Jpn. J. Appl. Phys. 50: 187–190

    Article  Google Scholar 

  20. Iizumi S, Kimura S, Tomioka S, Tsujimoto K,Uchida Y, Tomii K, Matsuda T and Nishioka Y 2011 Lead zirconate titanate AEHs utilizing different polarizations on diaphragm. Proc. Eng. 25: 187–190

    Article  Google Scholar 

  21. Li B, Laviage A J, You J H and Kim Y J 2013 Harvesting low-frequency acoustic energy using quarter-wavelength straight-tube acoustic resonator. Appl. Acoust. 74: 1271–1278

    Article  Google Scholar 

  22. Yang A, Li P, Wen Y, Lu C, Peng X, He W, Zhang J and Wang D 2014 Note: High-efficiency broadband acoustic energy harvesting using Helmholtz resonator and dual piezoelectric cantilever beams. Rev. Sci. Instrum. 85: 1–3

    Google Scholar 

  23. Lai T, Huang C and Tsou C 2008 Design and fabrication of acoustic wave actuated microgenerator for portable electronic devices. Symp. DTIP of MEMS & MOEMS, Nice, France, pp. 28–33

  24. Blackstock D T and Atchley A A 2001 Fundamentals of physical acoustics. J. Acoust. Soc. Am. 109(4): 1274–1276 doi:10.1121/1.1354982

    Article  Google Scholar 

  25. Rossi M 1988 Acoustics and electro acoustics. Artech House, Norwood, MA

    Google Scholar 

  26. Evangelisto M 1997 Latex allergy: The downside of standard precautions. Today’s Surgical Nurse 19(5): 28–33

    Google Scholar 

  27. Korniewicz D M 1997 Intelligently selecting gloves. Surg. Serv. Manag. 3(2): 13–15

    Google Scholar 

  28. Khan F, Stoeber B and Sassani F 2014b Modeling of linear micro electromagnetic energy harvesters with nonuniform magnetic field for sinusoidal vibrations. Microsyst. Technol. 21(3): 683–692. doi:10.1007/s00542-014-2359-5

    Article  Google Scholar 

  29. Khan F, Sassani F and Stoeber B 2010 Vibration-based PDMS membrane type electromagnetic power generator for low vibration environments. Canadian Society for Mechanical Engineering Forum (Victoria, Canada)

  30. Rao J S and Gupta K 1999 Introductory course on theory and practice of mechanical vibration. New Age Publishers, New Delhi

    Google Scholar 

  31. Wangsness R 1986 Electromagnetic fields. 2nd edn, John Wiley & Sons, Inc. Hoboken

    Google Scholar 

  32. Ballou G (2008) Handbook for sound engineers, 4th edn, Oxford, UK

  33. Thompson M T 1999 Inductance calculation techniques part II: approximations and handbook methods power control and intelligent motion [online]. Available from http://www.thompsonrd.com/induct2.pdf. Accessed 24 July 2015

  34. Boylested R L 1996 Introductory to circuit analysis, 8th edn, Prentice Hall, New Jersey

    Google Scholar 

  35. Wu L Y, Chen L W and Liu C M 2009 Acoustic energy harvesting using resonant cavity of a sonic crystal. Appl. Phys. Lett. 95: 013506. doi:10.1063/1.3176019

    Article  Google Scholar 

  36. Beeby S P, Torah R N, Tudor M J, Glynne J P, Donnell T, Saha C R and Roy S 2007 A micro electromagnetic generator for vibration energy harvesting. J. Micromech. Microeng. 17: 1257–65

    Article  Google Scholar 

  37. Matsuda T, Tomii K, Hagiwara S, Miyake S, Hasegawa Y, Sato T, Kaneko Y and Nishioka Y 2013 Helmholtz resonator for lead zirconate titanate Acoustic energy harvester. J. Phys. Conf. Ser. 476: 012003 doi:10.1088/1742-6596/476/1/012003

    Article  Google Scholar 

  38. Shinoda S, Tai T, Itoh H, Sugou T, Ichioka H, Kimura S and Nishioka Y 2010 Lead zirconate titanate AEH proposed for microelectromechanical system/IC integrated systems. Jpn. J. Appl. Phys. 49: 04DL21

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid U Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, F.U., Izhar Electromagnetic energy harvester for harvesting acoustic energy. Sādhanā 41, 397–405 (2016). https://doi.org/10.1007/s12046-016-0476-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0476-9

Keywords

Navigation