Skip to main content

Advertisement

Log in

Axial crushing of hollow and foam filled tubes: An overview

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Herein, a detailed review of the past studies carried out on crushing and energy absorption behaviour of hollow and foam filled tubes under axial compression is presented. Importance of such investigation is discussed for understanding the research need and to develop suitable alternatives. The focus of review is the deformation mechanism and energy absorption of hollow circular and square tubes, foam filled circular and square tubes notably. Comprehensive review on the various deformation modes for these tubes under axial impact load and effect of foam filling is presented. The review includes the various parameters affecting the peak load and energy absorption. Although various other forms of energy absorbing materials and structures exist such as composites, multi-wall tubes and honeycombs, these are not within the scope of present review. This paper intends to provide assistance in design and development of empty and foam filled tubes as effective energy absorbers. Further, this paper provides the necessary information for designers to understand the deformation of such tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16

Similar content being viewed by others

References

  1. National Highway Traffic Safety Administration 2012 U. S. Department of Transportation 2011. Traffic Safety Facts 2010. DOT HS 811 659

    Google Scholar 

  2. Times of India, Bhopal (M. P.), Dated 15-January-2014

  3. Meguid S A, Attia M and Monfort A 2004 On the crush behaviour of ultralight foam-filled structures. Mater. Des. 25(3): 183–189

    Article  Google Scholar 

  4. Meguid S A, Stranart J and Heyerman J 2004 On the layered micromechanical three-dimensional finite element modelling of foam-filled columns. Finite Elem. Anal. Des. 40(9–10): 1035–1057

    Article  Google Scholar 

  5. Wang X and Kockelman K M 2005 Occupant injury severity using a heteroscedastic ordered logit model: Distinguishing the effects of vehicle weight and type. Transp. Res. Record 1908: 195–204

    Article  Google Scholar 

  6. Williams T De, Pennington A, Barton D and Coates J 1999 The prediction of frontal impact crashworthiness of a space frame sports car. Int. J. Crashworthiness 4(2): 147–158

    Article  Google Scholar 

  7. Alexander J M 1960 An approximate analysis of the collapse of thin cylindrical shells under axial loading. Q. J. Mech. Appl. Math. 13(1): 10–15

    Article  MathSciNet  MATH  Google Scholar 

  8. Stangl P K and Meguid S A 1991 Effect of fillet radii upon the performance of a novel shock absorber for an electrically powered vehicle. Int. J. Vehicle Des. 12(2): 240–249

    Google Scholar 

  9. Wierzbicki T and Abramowicz W 1983 Theoretical investigation of the instantaneous folding force during the first fold. World Acad. Sci. Eng. Technol. 2: 2008-10-25

  10. Jones N 2011 Structural impact. Cambridge University Press, Cambridge

    Book  Google Scholar 

  11. Guillow S, Lu G and Grzebieta R 2001 Quasi-static axial compression of thin-walled circular aluminium tubes. Int. J. Mech. Sci. 43(9): 2103–2123

    Article  MATH  Google Scholar 

  12. Kotsikos G and Grasso M 2012 Damage tolerance of rail vehicle energy absorbers. Proc. Soc. Behav. Sci. 48: 1403–1414

    Article  Google Scholar 

  13. Qing-fen L, Yan-jie L, Hai-dou W and Sheng-yuan Y 2009 Finite element analysis and shape optimization of automotive crash-box subjected to low velocity impact. Proceedings of Measuring Technology and Mechatronics Automation. ICMTMA’09. International Conference, pp 791–794

  14. Kellas S and Jones L E 2002 Energy absorbing seat system for an agricultural aircraft. Structural Dynamics Branch, Structures and Materials Competency NASA Langley Research Center Hampton, VA

    Google Scholar 

  15. Laananen D H 1991 Crashworthiness analysis of commuter aircraft seats and restraint systems. J. Safety. Res. 22: 83–95

    Article  Google Scholar 

  16. Majumder A, Altenhof W, Vijayan V and Jin S Y 2008 Quasi-static axial cutting of AA6061 T4 and T6 round extrusions. Proc. Inst. Mech. Eng. L-J Mater. 222(3):183–195

    Article  Google Scholar 

  17. Ashby M F, Evans T, Fleck N A, Hutchinson J, Wadley H and Gibson L 2000 Metal foams: A design guide. Butterworth-Heinemann, Boston

    Google Scholar 

  18. Eifert H, Banhart J, Baumeister J and Yu M 1999 Weight savings by aluminium metal foams: Production, properties and applications in automotive. SAE Technical Paper 1999-01-0887, doi:10.4271/1999-01-0887

  19. Goel M D, Peroni M, Solomos G, Mondal D P, Matsagar V A, Gupta A K, Larcher M and Marburg S 2012 Dynamic Compression behavior of cenosphere aluminum alloy syntactic foam. Mater. Design. 42: 418–423

    Article  Google Scholar 

  20. Goel M D, Matsagar V A, Gupta A K and Marburg S 2013 Strain rate sensitivity of closed cell aluminum fly ash foam. T. Nonferr. Metal. Soc. 23: 1080–1089

    Article  Google Scholar 

  21. Alghamdi A A A 2001 Collapsible impact energy absorbers: An overview. Thin Wall. Struct. 39(2): 189–213

    Article  MathSciNet  Google Scholar 

  22. Reid S R 1993 Plastic deformation mechanisms in axially compressed metal tubes used as impact energy absorbers. Int. J. Mech. Sci. 35(2): 1035–1052

    Article  Google Scholar 

  23. Abramowicz W and Wierzbicki T 1989 Axial crushing of multicorner sheet metal columns. J. Appl. Mech. 56(1): 113–120

    Article  Google Scholar 

  24. Aljawi A A N 2002 Numerical simulation of axial crushing of circular tubes. JKAU: Eng. Sci. 14(2): 101–115

    Article  Google Scholar 

  25. Fyllingen Ø, Hopperstad A and Hanssen Langseth M 2010 Modelling of tubes subjected to axial crushing. Thin Wall. Struct. 48(2): 134–142

    Article  Google Scholar 

  26. Gupta N K, Velmurugan R and Gupta SK 1997 An analysis of axial crushing of composite tubes. J. Compos. Mater. 31(13): 1262–1286

    Article  Google Scholar 

  27. Gupta N K 1998 Some aspects of axial collapse of cylindrical thin-walled tubes. Thin Wall. Struct.32(1–3): 111–126

    Article  Google Scholar 

  28. Gupta N K and Nagesh 2006 Collapse mode transitions of thin tubes with wall thickness, end condition and shape eccentricity. Int. J. Mech. Sci. 48: 210–223

    Article  MATH  Google Scholar 

  29. Gupta N K, Sekhon G S and Gupta P K 2002 A study of fold formation in axisymmetric axial collapse of round tubes. Int. J. Impact Eng. 27(1): 87–117

    Article  Google Scholar 

  30. Gupta P K and Gupta N K 2005 Multiple barrelling in axial compression of cylindrical tubes. Lat. Am. J. Solids Struct. 2(2): 195–217

    Google Scholar 

  31. Gupta P K, Gupta N K and Sekhon G S 2008 Finite element analysis of collapse of metallic tubes. Defence Sci. J. 58 (1): 34–45

    Article  Google Scholar 

  32. Hsu S S and Jones N 2004 Quasi-static and dynamic axial crushing of thin-walled circular stainless steel, mild steel and aluminium alloy tubes. Int. J. Crashworthiness 9(2): 195–217

    Article  Google Scholar 

  33. Kazancı Z and Bathe K-J 2012 Crushing and crashing of tubes with implicit time integration. Int. J. Impact Eng. 42: 80–88

    Article  Google Scholar 

  34. Langseth M, Hopperstad O S and Hanssen A G 1998 Crash behaviour of thin-walled aluminium members. Thin Wall. Struct. 32(1–3): 127–150

    Article  Google Scholar 

  35. Marzbanrad J, Abdollahpoor A and Mashadi B 2009 Effects of the triggering of circular aluminum tubes on crashworthiness. Int. J. Crashworthiness 14(6): 591–599

    Article  Google Scholar 

  36. Meng Q, Al-Hassani S T S and Soden P D 1983 Axial crushing of square tubes. Int. J. Mech. Sci. 25(9–10): 747–773

    Article  Google Scholar 

  37. Sahu R R and Gupta P 2002 Comparative large deformations studies on circular tubes. Int. J. Civil. Struct. Eng. 3(2): 367–379

    Google Scholar 

  38. Shakeri M, Salehghaffari S and Mirzaeifar R 2007 Expansion of circular tubes by rigid tubes as impact energy absorbers: Experimental and theoretical investigation. Int. J. Crashworthiness12(5): 493–501

    Article  Google Scholar 

  39. Tabiei A and Nilakantan G 2009 Axial crushing of tubes as an energy dissipating mechanism for the reduction of acceleration induced injuries from mine blasts underneath infantry vehicles. Int. J. Impact Eng. 36(5): 729–736

    Article  Google Scholar 

  40. Pugsley S A and Macaulay M 1960 The large-scale crumpling of thin cylindrical columns. Q. J. Mech. Appl. Math. 13(1): 1–9

    Article  MathSciNet  Google Scholar 

  41. Abramowicz W and Jones N 1984 Dynamic axial crushing of square tubes. Int. J. Impact Eng. 2(2): 179–208

    Article  Google Scholar 

  42. Abramowicz W 1997 The macro element approach in crash calculations. Proc. Crashworthiness Transp. Syst. Struct. Impact. Occup. Prot. 332: 291–320

    Google Scholar 

  43. Abramowicz W and Jones N 1986 Dynamic progressive buckling of circular and square tubes. Int. J. Impact Eng. 4(4): 243–270

    Article  Google Scholar 

  44. Wierzbicki T and Schneider F 1999 Energy equivalent flow stress in crash calculations. Impact and Crashworthiness laboratory. List of Technical Reports of the Impact and Crashworthiness Laboratory

    Google Scholar 

  45. Hanssen A G, Langseth M and Hopperstad O S 2000 Static and dynamic crushing of square aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 24(4): 347–383

    Article  MATH  Google Scholar 

  46. Hanssen A G, Langseth M and Hopperstad O S 2000 Static and dynamic crushing of circular aluminium extrusions with aluminium foam filler. Int. J. Impact Eng. 24(5): 475–507

    Article  MATH  Google Scholar 

  47. Hanssen A G, Lorenzi L, Berger K, Hopperstad O S and Langseth M 2000 A demonstrator bumper system based on aluminium foam filled crash boxes. Int. J. Crashworthiness 5(4): 381–392

    Article  Google Scholar 

  48. Johnson G R and Cook W H 1983 A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics, pp 541–547

  49. Banhart J 2001 Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6): 559–632

    Article  Google Scholar 

  50. Gibson L 2000 Mechanical behavior of metallic foams. Annu. Rev. Mater. Sci. 30: 191–227

    Article  Google Scholar 

  51. Lefebvre L, Banhart J and Dunand D 2008 Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 10(9): 775–787

    Article  Google Scholar 

  52. Neikov O D and Naboychenko S S 2009 Handbook of non-ferrous metal powders: Technologies and applications. Elsevier Science Limited

  53. Gameiro C P and Cirne J 2007 Dynamic axial crushing of short to long circular aluminium tubes with agglomerate cork filler. Int. J. Mech. Sci. 49(9): 1029–1037

    Article  Google Scholar 

  54. Goel M D and Laxminarayan K 2012 Deformation and energy absorption of aluminum foam filled square tubes. Adv. Mater. Res. Trans. Tech. Pub. 585: 34–38

    Article  Google Scholar 

  55. Kenny L 1996 Mechanical properties of particle stabilized aluminum foam. Mater. Sci. Forum. 217–222: 1883–1890

    Article  Google Scholar 

  56. Mirfendereski L, Salimi M and Ziaei-Rad S 2008 Parametric study and numerical analysis of empty and foam-filled thin-walled tubes under static and dynamic loadings. Int. J. Mech. Sci. 50(6): 1042–1057

    Article  Google Scholar 

  57. Rais Rohani M and Singh M N 2004 Comparison of global and local response surface techniques in reliability-based optimization of composite structures. Struct. Multidiscip. Optim. 26: 333–345

    Article  Google Scholar 

  58. Seitzberger M, Rammerstorfer F G, Gradinger R, Degischer H, Blaimschein M and Walch C 2000 Experimental studies on the quasi-static axial crushing of steel columns filled with aluminium foam. Int. J. Solids Struct. 37(30): 4125–4147

    Article  Google Scholar 

  59. Thornton P 1980 Energy absorption by foam filled structures. SAE Technical Paper 800081, doi:10.4271/800081

    Google Scholar 

  60. Lampinen B and Jeryan R 1982 Effectiveness of polyurethane foam in energy absorbing structures. SAE Technical Paper 820494. doi:10.4271/820494

    Google Scholar 

  61. Reddy T Y and Wall R J 1988 Axial compression of foam-filled thin-walled circular tubes. Int. J. Impact Eng. 7(2): 151–166

    Article  Google Scholar 

  62. Mantena P R and Mann R 2003 Impact and dynamic response of high-density structural foams used as filler inside circular steel tube. Compos. Struct. 61(4): 291–302

    Article  Google Scholar 

  63. Santosa S and Wierzbicki T 1998 Crash behavior of box columns filled with aluminum honeycomb or foam. Comput. Struct. 68(4): 343–367

    Article  MATH  Google Scholar 

  64. Sun G, Li G, Hou S, Zho S, Li W and Li Q 2010 Crashworthiness design for functionally graded foam-filled thin-walled structures. Mat. Sci. Eng. A-Struct. 527(7–8): 1911–1919

    Article  Google Scholar 

  65. Toksoy A and Güden M 2005 The strengthening effect of polystyrene foam filling in aluminum thin-walled cylindrical tubes. Thin Wall. Struct. 43(2): 333–350

    Article  Google Scholar 

  66. Cui L, Kiernan S and Gilchrist M D 2009 Designing the energy absorption capacity of functionally graded foam materials. Mater. Sci. Eng. 507(1–2): 215–225

    Article  Google Scholar 

  67. Nouraei H 2011 Nonlinear FEA of the crush behaviour of functionally graded foam-filled columns. MS thesis, University of Toronto, Canada

  68. Santosa S, Wierzbicki T, Hanssen A G and Langseth M 2000 Experimental and numerical studies of foam-filled sections. Int. J. Impact Eng. 24(5): 509–534

    Article  Google Scholar 

  69. Hanssen A G, Langseth M and Hopperstad O S 1999 Static crushing of square aluminium extrusions with aluminium foam filler. Int. J. Mech. Sci. 41(8): 967–993

    Article  MATH  Google Scholar 

  70. Hosseinipour S J and Daneshi G H 2003 Energy absorption and mean crushing load of thin-walled grooved tubes under axial compression. Thin Wall. Struct. 41: 31–46

    Article  Google Scholar 

  71. Chirwa E C 1993 Theoretical analysis of tapered thin-walled metal inverbucktube. Int. J. Mech. Sci. 35(3–4): 325–351

    Article  Google Scholar 

  72. Salehghaffari S, Tajdari M, Panahi M and Mokhtarnezhad F 2010 Attempts to improve energy absorption characteristics of circular metal tubes subjected to axial loading. Thin Wall. Struct. 48(6): 379–390

    Article  Google Scholar 

  73. Yamazaki K and Han J 2000 Maximization of the crushing energy absorption of cylindrical shells. Adv. Eng. Software 31(6): 425–434

    Article  Google Scholar 

  74. Chiandussi G and Avalle M 2002 Maximisation of the crushing performance of a tubular device by shape optimization. Comput. Struct. 80(27–30): 2425–2432

    Article  Google Scholar 

  75. Alexandrov N M, Dennis J E Jr, Lewis R M and Torczon V 1998 Trust region frame work for managing the use of approximation models in optimization. Struct. Multidiscip. Optim. 15: 16–23

    Article  Google Scholar 

  76. Fang H, Rais-Rohani M, Liu Z and Horstemeyer M 2005 A comparative study of metamodeling methods for multiobjective crashworthiness optimization. Comput. Struct. 83(25–26): 2121–2136

    Article  Google Scholar 

  77. Wang G G, Dong Z and Aitchison P 2001 Adaptive response surface method: A global optimization scheme for approximation based design problems. J. Eng. Optim. 33(6): 707–733

    Article  Google Scholar 

  78. Meguid S A, Attia M, Stranart J and Wang W 2007 Solution stability in the dynamic collapse of square aluminium columns. Int. J. Impact Eng. 34(2): 348–359

    Article  Google Scholar 

  79. Veale P J 2010 Investigation of the behavior of open cell aluminum foam. MS thesis University of Massachusetts Amherst, USA

  80. Hanssen A G, Reyes A, Hopperstad O S and Langseth M 2005 Design and finite element simulations of aluminium foam-filled thin-walled tubes. Int. J. Vehicle Des. 37(2–3): 126–155

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manmohan Dass Goel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandarkar, A., Goel, M.D. & Hora, M.S. Axial crushing of hollow and foam filled tubes: An overview. Sādhanā 41, 909–921 (2016). https://doi.org/10.1007/s12046-016-0525-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-016-0525-4

Keywords

Navigation