Skip to main content
Log in

Bridge pier scour in cohesive soil: a review

  • Published:
Sādhanā Aims and scope Submit manuscript

Abstract

Bridge failure due to local scour has stimulated the enthusiasm of many researchers to study the causes of scouring and to predict the ultimate scour depth at bridge foundation. A brief review of the state of artwork of investigation conducted on local scour at bridge pier in cohesive bed material is presented. Scour process and mechanism at bridge pier in cohesive and noncohesive soil are presented. The effects of parameters influencing local scour around bridge pier is discussed. Empirical equations for predicting ultimate scour depth at bridge pier embedded in cohesive soil are outlined. Comparisons of the equations are made considering two examples: one under laboratory condition and another under field condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Abbreviations

b :

pier width or pier diameter

B :

diameter of scour hole

b :

projected width of pier perpendicular to the flow

b * :

foundation diameter of circular non-dimensional pier

C :

clay content

CEC :

cation-exchange capacity

Comp.:

degree of compaction of clayey soil

C u :

cohesion

d a :

arithmetic mean size of the sediment mixture

d 50 :

mean particle size

d 84 :

sediment size for which 84% of bed material is finer

d 16 :

sediment size for which 16% of bed material is finer

\( \hat{d} \) :

ratio of pier diameter to median sediment size

E :

compaction energy

F r :

flow Froude number

F p :

pier Froude number

g :

gravitational acceleration

h :

flow depth

k sh :

pier or abutment shape factor

k sp :

correction factor for pier spacing effect

k a :

correction factor for pier spacing effect

k b :

correction factor for bed condition

k w :

shallow water effect factor

l :

length of pier

PI :

plasticity index

R p :

pier Reynolds number

t :

time of scour

t * :

dimensionless time

UCS * :

dimensionless unconfined compressive strength of cohesive sediment bed

UCS :

unconfined compressive strength of cohesive sediment bed

V :

approaching flow velocity

V a :

armour velocity

V s :

scour volume

V cs :

critical threshold velocity for sand used in clay–sand mixture

V c :

critical mean velocity at the threshold condition

V * :

shear velocity

V *c :

critical shear velocity

\( \hat{V} \) :

non-dimensional approach velocity

W * :

antecedent moisture content required to saturate the soil sample

W c :

initial moisture content (%)

W copt :

proctor optimum water content

\( \hat{W} \) :

non-dimensional water content

X max :

maximum equilibrium scour hole diameter

\( \hat{X}_{\hbox{max} } \) :

non-dimensional maximum equilibrium scour hole diameter

Y :

depth from bed level to the top of the foundation

y smax :

maximum scour depth

y sms :

maximum scour depth below the bed level in cohesionless sediment

y scw :

depth of scour in wake zone of pier in cohesive soil

y ss :

depth of scour in wake zone of pier in non-cohesive soil

y st :

scour depth as a function of time

y smx :

extrapolated ultimate depth of scour at \( t \to \alpha \)

\( \hat{y}_{s\hbox{max} } \) :

non-dimensional maximum equilibrium scour depth

Z :

side slope of scour hole

α :

flow attack angle

Δγ s :

difference in specific weight of sediment and fluid

γ s :

specific weight of sediment

γ w :

specific weight of water

ρ :

density of water

ϕ c :

angle of repose of cohesive sediments

θ :

kinematic viscosity of water

ϕ s :

angle of repose of sand

σ g :

sediment gradation

τ s :

vane shear strength of bed

τ c :

critical shear stress of bed sediment at threshold condition

τ cs :

shield’s critical shear stress for cohesionless sediments

τ max :

maximum shear stress

\( \hat{\tau }_{s} \) :

non-dimensional bed shears strength

References

  1. Briaud J L, Ting F C K, Chen H C, Gudavalli R, Perugu S and Wei G 1999 SRICOS: prediction of scour rate in cohesive soils at Bridge Piers. J. Geotech. Geoenviron. Eng. 125(4): 237–246

    Article  Google Scholar 

  2. Shirole A M and Holt R C 1991 Planning for comprehensive bridge safety assurance program. Transportation Research Record No.1290, Third Bridge Engineering Conference 1: 39–50

  3. Dey S, Bose S K and Sastry G L N 1995 Clear water scour at Circular pier: a model. J. Hydraul. Eng. 121(12): 869–876

    Article  Google Scholar 

  4. Laursen E M and Toch A 1953 A generalized model study of scour around bridge piers and abutment. In: Proceedings of IAHR International Hydraulics Conference, Minnesota, pp. 123–131

  5. Melville B M and Cheiw Y M 1999 Time scale for local scour at bridge piers. J. Hydraul. Eng. 125(1): 59–65

    Article  Google Scholar 

  6. Melville B W 1997 Pier and abutment scour: integrated approach. J. Hydraul. Eng. 123(2): 125–136

    Article  Google Scholar 

  7. Raudkivi A J and Ettema R 1983 Clear-water scour at cylindrical piers. J. Hydraul. Eng. 109(3): 338–350

    Article  Google Scholar 

  8. Sheppard D M and Miller W 2006 Live bed local pier scour experiments. J. Hydraul. Eng. 132(7): 635–642

    Article  Google Scholar 

  9. Kumar A and Kothyari U C 2012 Three-dimensional flow characteristics within the scour hole around circular uniform and compound piers. J. Hydraul. Eng. 138(5): 420–429

    Article  Google Scholar 

  10. Sheppard D M, Melville B and Demir H 2013 Evaluation of existing equations for local scour at bridge pier. J. Hydraul. Eng. 140(1): 14–32

    Article  Google Scholar 

  11. Kothyari U C 2007 Indian practice on estimation of scour around bridge piers—a comment. Sadhana 32(3): 187–197

    Article  Google Scholar 

  12. Kothyari U C and Fish 2008 Bridge scour: status and research challenges. J. Hydraul. Eng. 14(1): 1–27

  13. Ansari S A, Kothyari U C and Ranga Raju K G 2002 Influence of cohesion on scour around bridge piers. J. Hydraul. Res. 40(6): 717–729

    Article  Google Scholar 

  14. Briaud J L, Chen H C, Li Y and Nurtjahyo P 2004 SRICOS-EFA method for complex pier in fine-grained soil. J. Geotech. Geoenviron. Eng. 130 (11): 1180–1191

    Article  Google Scholar 

  15. Debnath K and Chaudhuri S 2010a Bridge pier scour in clay–sand mixed sediments at near-threshold velocity for sand. J. Hydraul. Eng. 136(9): 597–609

    Article  Google Scholar 

  16. Debnath K and Chaudhuri S 2010b Laboratory experiments on local scour around cylinder for clay and clay–sand mixed bed. Elsevier Eng. Geol. 111(12): 51–61

    Article  Google Scholar 

  17. Debnath K and Chaudhuri S 2012 Local scour around non-circular piers in clay–sand cohesive sediment beds. Elsevier Eng. Geol. 151(10): 1–14

    Google Scholar 

  18. Kho K T, Valentine E and Glendinning S 2004 An experimental study of local scour around bridge piers in cohesive soils. In: Proceedings of the 2nd International Conference on Scour & Erosion, International Society of Soil Mechanics and Geotechnical Engineering (ISSMGE), London, UK

  19. Li Y, Briaud J L, Chen H C, Nurtjahyo P and Wang J 2002 Shallow water effect on pier scour in clay. In: First International conference on scour of foundation

  20. Link O, Klischies K, Montalva G and Dey S 2013 Effect of bed compaction on scour at piers in sand–clay mixture. J. Hydraul. Eng. 139(9): 1013–1019

    Article  Google Scholar 

  21. Molinas A and Hosny M M 1999 Effect of gradations and cohesion on bridge scour. vol. 4. Experimental study of scour around Circular Piers in Cohesive soils. FHWA-RD-99-186

  22. Najafzadeh M and Barani G A 2014 Experimental study of local scour around a vertical pier in cohesive soils. Scientia Iranica 21(2): 241–250

    Google Scholar 

  23. Rambabu M, Narasimha Rao S and Sundar 2003 Current-induced scour around a vertical pile in cohesive soil. Ocean Eng. 30(4): 893–920

  24. Salaheldin T M, Imran J, Kassem A and Chaudhry H M 2003 Scale physical modeling of local scour in cohesive soil. TRB Annual Meeting. Washington, D.C., January 12–16

  25. Ting F C K, Briaud J L, Chen H C, Gudavalli Rao, Perugu S and Wei G 2001 Flume test for scour in clay at circular pier. J. Hydraul. Eng. 127(11): 969–978

    Article  Google Scholar 

  26. Melville B W 1975 Local scour at bridge sites. Ph.D. Dissertation. University of Auckland, School of Engineering, New Zealand

  27. Dargahi B 1990 Controlling mechanism of local scouring. J. Hydraul. Eng. 116(10): 1197–1214

    Article  Google Scholar 

  28. Melville B M and Coleman S E 2000 Bridge Scour. Water Resources Publication, Littleton, pp. 550

    Google Scholar 

  29. Guo J 2012 Pier scour in clear water for sediment mixture. J. Hydraul. Res. 50(1): 18–27

    Article  Google Scholar 

  30. Ahmad F and Rajaratnam N 1998 Flow around bridge pier. J. Hydraul. Eng. 124(3): 288–300

    Article  Google Scholar 

  31. Ali K H M and Karim O 2000 Simulation of flow around piers. J. Hydraul. Res. 40(2): 161–174

    Article  Google Scholar 

  32. Kothyari U C, Kumar A and Jain R K 2014 Influence of cohesion on river bed scour in wake region of piers. J. Hydraul. Eng. 14(1): 1–13

    Article  Google Scholar 

  33. Chabert J and Engeldinger P 1956 Etude des affouillements autour des pile de pont. Series A, Laboratoire Nationald’Hydraulique. Chatou, France (in French)

  34. Shen H W, Schneider V R and Karaki S 1969 Local scour around bridge piers. J. Hydraul. Div. ASCE 96(6): 1919–1940

    Google Scholar 

  35. Sha Y Q 1965 Basic principles of sediment transport. J. Sediment Res. Beijing, China, 1(2): 1–54

  36. Zhang Rui-jin 1989 River and sediment mechanics. Beijing, China Water Resources and Hydropower Press, pp. 63–84 (in Chinese)

  37. Namjoshi A G 1992 Anticipated scour depth in non-alluvial/ clayey beds. In: Proceedings of International Seminar on Bridge Structure and Foundation Bombay Document 3. Conference Document 3 vol. 2

  38. Melville B W and Sutherland A J 1988 Design method for local scour at bridge pier. J. Hydraul. Eng. 114(10): 1210–1226

    Article  Google Scholar 

  39. Melville B W 1984 Live bed scour at Bridge Piers. J. Hydraul. Eng. 110(9): 1234–1247

    Article  Google Scholar 

  40. Ettema R, Kirkil G and Muste M 2006 Similitude of large-scale turbulence in experiments on local scour at cylinder. J. Hydraul. Eng. 132 (1): 33–40

    Article  Google Scholar 

  41. Sumer B M, Fredsoe J and Christiansen N 1993 Influence of cross section on wave scour around piles. J. Waterway Port Coast. Ocean Eng. 119(5): 477–495

    Article  Google Scholar 

  42. Tison L J 1940 Erosion autour de piles de pont en riviere. Ann. Des Travaux Publics de Belgique 41(6): 813–871

    Google Scholar 

  43. Larras J 1963 Profondcurs maximales d’crosion des fonds mobiles autour des piles en rivière. Ann. Ponts et Chaussées, Vl. 133(4): 411–424

    Google Scholar 

  44. Paintal A S and Garde R J 1965 Effect of inclination and shape of obstruction on local scour. Roorkee University Res. J. 8(1&2): 51–64

    Google Scholar 

  45. Dietz J W 1973 Kolkbildung an einem krciszylindrischen Pfeilerpaar. Die Bautechnik 50(6): 203–208

    Google Scholar 

  46. Melville B W and Raudkivi A J 1996 Effect of foundation geometry on bridge pier scour. J. Hydraul. Eng. 122(4): 203–209

    Article  Google Scholar 

  47. Richardson E V and Davis S R 2001 Evaluating scour at bridge. 4th edn. Hydraulic Engineering Circular No. 18 (HEC-18). Publication No. FHWA NHI 01-001, Federal Highway Administration, U.S. Department of Transportation, Washington, DC

  48. Laursen E M 1960 Scour at bridge crossings. In: Proceedings of ASCE, vol. 86, pp. 39–54

    Google Scholar 

  49. Ettema R 1980 Scour at bridge pier. No. 216, School of Engineering, University of Auckland, Aukland, New Zealand

  50. Cheiw 1984 Local scour at bridge pier. PhD thesis, Auckland University, New Zealand

  51. Nicollet G and Ramette M 1971 Scour at bridge cylindrical piers. In: Proceedings of the 14th IAHR Congress, Paris, vol. 3, pp. 315–322

  52. Dietz J W 1972 Ausbildung von langen Pfeilern bei Schraganströmung am Beispiel der BAB-Mainbrücke Ed-dersheim; Mitt. blatt der Bundesanstalt für Wasserbau, Karlsruhe, No. 31, pp. 79–94

  53. Lacey G 1930 Stable channel in alluvium. Minutes Proc. Instit. Civ. Eng. 229(1930): 259–292

    Article  Google Scholar 

  54. Press W H, Flnnery B P, Teukolsky S A and Vetterling W T 1986 Numerical recipes—the art of scientific computing, Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  55. Briaud J L, Chen H C, Kwak, K W, Han S W and Ting F C K, 2001 Multiflood and multilayer method for scour rate prediction at bridge piers. J. Geotech. Geoenviron. Eng. 127(2): 114–125

    Article  Google Scholar 

  56. Indian Railway Standard 1985 Code of practice for the design of sub-structures and foundation of bridges. Research Designs and Standards Organisation, Lucknow

  57. IRC 1998 Standard specifications and code of practice for road bridges. Section 1, IRC: 5-1998

  58. IRC 2000 Standard specifications and code of practice for road bridges. Section VII, IRC: 78-2000

  59. Arneson L A, Zevenbergen L W, Lagasse P F and Clopper P E 2012 Evaluating scour at bridge. 5th edn. Hydraul. Eng. Circular No.18 (HEC-18). Rep.No. FHWA-HIF-12-003, Federal Highway Administration, U.S. Dept. of Transportation, Washington, D.C.

Download references

Acknowledgements

Support provided by MHRD and National Institute of Technology, Silchar, India, for the research is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A K Barbhuiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonia Devi, Y., Barbhuiya, A.K. Bridge pier scour in cohesive soil: a review. Sādhanā 42, 1803–1819 (2017). https://doi.org/10.1007/s12046-017-0698-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12046-017-0698-5

Keywords

Navigation