Skip to main content
Log in

Machine learning algorithms for diabetes detection: a comparative evaluation of performance of algorithms

  • Research Paper
  • Published:
Evolutionary Intelligence Aims and scope Submit manuscript

Abstract

Recently machine learning algorithms are widely used for the prediction of different attributes, and these algorithms find widespread applications in a variety of domains. Machine learning in health care has been one of the core areas of research where machine learning models are used on the medical datasets to predict different attributes. This work provides a comparative evaluation of different classical as well as ensemble machine learning models, which are used to predict the risk of diabetes from two different datasets, i.e., PIMA Indian diabetes dataset and early-stage diabetes risk prediction dataset. From the comparative analysis, it is found that the superlearner model provides the best accuracy i.e. 86% for PIMA Indian diabetes dataset, and it provides 97% accuracy for diabetes risk prediction dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–37

    Google Scholar 

  2. Yang J, Li Y, Liu Q, Li L, Feng A, Wang T, Zheng S, Anding X, Lyu J (2020) Brief introduction of medical database and data mining technology in big data era. J Evid Based Med 13(1):57–69

    Article  Google Scholar 

  3. Shadi A, Aurea A, Atwood JW, Lara JA, Lizcano D (2019) Particularities of data mining in medicine: lessons learned from patient medical time series data analysis. EURASIP J Wirel Commun Netw 1:260

  4. Bellazzi R, Zupan B (2008) Predictive data mining in clinical medicine: current issues and guidelines. Int J Med Inf 77(2):81–97

    Article  Google Scholar 

  5. Bellazzi R, Ferrazzi F, Sacchi L (2011) Predictive data mining in clinical medicine: a focus on selected methods and applications. Wiley Interdiscip Rev Data Min Knowl Discov 1(5):416–430

    Article  Google Scholar 

  6. Parva E, Boostani R, Ghahramani Z, Paydar S (2017) The necessity of data mining in clinical emergency medicine; a narrative review of the current literatrue. Bull Emerg Trauma 5(2):90

    Google Scholar 

  7. Dirar AHM, Doupis J (2017) Gestational diabetes from a to z. World J Diabetes 8(12):489

    Article  Google Scholar 

  8. Ramachandran A, Snehalatha C, Shyamala P, Vijay V, Viswanathan M (1994) Prevalence of diabetes in pregnant women-a study from southern india. Diabetes Res Clin Pract 25(1):71–74

    Article  Google Scholar 

  9. Mishra M, Nayak J, Naik B, Abraham A (2020) Deep learning in electrical utility industry: a comprehensive review of a decade of research. Eng Appl Artif Intell 96:104000

    Article  Google Scholar 

  10. Kotsiantis SB, Zaharakis ID, Pintelas PE (2006) Machine learning: a review of classification and combining techniques. Artif Intell Rev 26(3):159–190

    Article  Google Scholar 

  11. Kavakiotis I, Tsave O, Salifoglou A, Maglaveras N, Vlahavas I, Chouvarda I (2017) Machine learning and data mining methods in diabetes research. Comput Struct Biotechnol J 15:104–116

    Article  Google Scholar 

  12. Larabi-Marie-Sainte S, Aburahmah L, Almohaini R, Saba T (2019) Current techniques for diabetes prediction: review and case study. Appl Sci 9(21):4604

    Article  Google Scholar 

  13. Elhadd T, Mall R, Bashir M, Palotti J, Fernandez-Luque L, Farooq F, Al Mohanadi D, Dabbous Z, Malik RA, Abou-Samra AB (2020). Artificial intelligence (AI) based machine learning models predict glucose variability and hypoglycaemia risk in patients with type 2 diabetes on a multiple drug regimen who fast during ramadan (the profast–it ramadan study). Diabetes Res Clin Pract

  14. Zarkogianni K, Athanasiou M, Thanopoulou AC, Nikita KS (2017) Comparison of machine learning approaches toward assessing the risk of developing cardiovascular disease as a long-term diabetes complication. IEEE J Biomed Health Inf 22(5):1637–1647

    Article  Google Scholar 

  15. Han W, Yang S, Huang Z, He J, Wang X (2018) Type 2 diabetes mellitus prediction model based on data mining. Inf Med Unlocked 10:100–107

    Article  Google Scholar 

  16. Alkhasawneh MS (2019) Hybrid cascade forward neural network with elman neural network for disease prediction. Arab J Sci Eng 44(11):9209–9220

    Article  Google Scholar 

  17. Guo Y, Bai G, Hu Y (2012) Using bayes network for prediction of type-2 diabetes. In: 2012 International conference for internet technology and secured transactions, pp 471–472. IEEE

  18. Rahman M, Islam D, Mukti RJ, Saha I (2020) A deep learning approach based on convolutional LSTM for detecting diabetes. Comput Biol Chem 88:107329

    Article  Google Scholar 

  19. Xia Y, Chen K, Yang Y (2021) Multi-label classification with weighted classifier selection and stacked ensemble. Inf Sci 557:421–442

    Article  MathSciNet  MATH  Google Scholar 

  20. Mohapatra D, Subudhi B (2020) Weighted majority rule ensemble classifier for sensor fault classification for plasma position control in tokamaks. Fusion Eng Des 160:111969

    Article  Google Scholar 

  21. Moyano JM, Gibaja EL, Cios KJ, Ventura S (2018) Review of ensembles of multi-label classifiers: models, experimental study and prospects. Inf Fus 44:33–45

    Article  Google Scholar 

  22. Pari R, Sandhya M, Sankar S (2018) A multitier stacked ensemble algorithm for improving classification accuracy. Comput Sci Eng 22(4):74–85

    Article  Google Scholar 

  23. Graczyk M, Lasota T, Trawiński B, Trawiński K (2010) Comparison of bagging, boosting and stacking ensembles applied to real estate appraisal. In: Asian conference on intelligent information and database systems. Springer, pp 340–350

  24. Hasan MK, Alam MA, Das D, Hossain E, Hasan M (2020) Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 8:76516–76531

    Article  Google Scholar 

  25. https://www.kaggle.com/uciml/pima-indians-diabetes-database. Online; accessed 08-Jun-2021

  26. https://www.kaggle.com/ishandutta/early-stage-diabetes-risk-prediction-dataset. Online; accessed 02-Aug-2021

  27. Friedman L, Komogortsev OV (2019) Assessment of the effectiveness of seven biometric feature normalization techniques. IEEE Trans Inf Forensics Secur 14(10):2528–2536

    Article  Google Scholar 

  28. Jo J-M (2019) Effectiveness of normalization pre-processing of big data to the machine learning performance. J Korea Inst Electron Commun Sci 14(3):547–552

    Google Scholar 

  29. Ben-Gal I (2005) Outlier detection. Data mining and knowledge discovery handbook. Springer, pp 131–146

  30. Hodge V, Austin J (2004) A survey of outlier detection methodologies. Artif Intell Rev 22(2):85–126

    Article  MATH  Google Scholar 

  31. Wang H, Bah MJ, Hammad M (2019) Progress in outlier detection techniques: a survey. IEEE Access 7:107964–108000

    Article  Google Scholar 

  32. Nnamoko N, Korkontzelos I (2020) Efficient treatment of outliers and class imbalance for diabetes prediction. Artif Intell Med 104:101815

    Article  Google Scholar 

  33. Hemphill E, Lindsay J, Lee C, Măndoiu II, Nelson CE (2014) Feature selection and classifier performance on diverse bio-logical datasets. volume 15, p S4. Springer, Springer Science and Business Media LLC

  34. Tuv E, Borisov A, Runger G, Torkkola K (2009) Feature selection with ensembles, artificial variables, and redundancy elimination. J Mach Learn Res 10:1341–1366

    MathSciNet  MATH  Google Scholar 

  35. Kamkar I, Gupta SK, Phung D, Venkatesh S (2015) Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso. J Biomed Inf 53:277–290

    Article  Google Scholar 

  36. Arlot S, Celisse A et al (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79

    Article  MathSciNet  MATH  Google Scholar 

  37. Ng AY, Jordan MI (2002) On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes. In: Advances in neural information processing systems, pp 841–848

  38. Merghadi A, Yunus AP, Dou J, Whiteley J, ThaiPham B, Bui DT, Avtar R, Abderrahmane B(2020) Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance. Earth Sci Rev, p 103225

  39. Bergstra J, Bengio Y (2012) Random search for hyper-parameter optimization. J Mach Learn Res 13(1):281–305

    MathSciNet  MATH  Google Scholar 

  40. Pradeep Kandhasamy J, Balamurali SJPCS (2015) Performance analysis of classifier models to predict diabetes mellitus. Procedia Comput Sci 47:45–51

    Article  Google Scholar 

  41. Yuvaraj N, SriPreethaa KR (2019) Diabetes prediction in healthcare systems using machine learning algorithms on hadoop cluster. Clust Comput 22(1):1–9

    Article  Google Scholar 

  42. Anuja Kumari V, Chitra R (2013) Classification of diabetes disease using support vector machine. Int J Eng Res Appl 3(2):1797–1801

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhransu Padhee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saxena, S., Mohapatra, D., Padhee, S. et al. Machine learning algorithms for diabetes detection: a comparative evaluation of performance of algorithms. Evol. Intel. 16, 587–603 (2023). https://doi.org/10.1007/s12065-021-00685-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12065-021-00685-9

Keywords

Navigation