Skip to main content

Advertisement

Log in

Proteasome inhibitors in cancer therapy

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

The ubiquitin proteasome pathway plays a critical role in regulating many processes in the cell which are important for tumour cell growth and survival. Inhibition of proteasome function has emerged as a powerful strategy for anti-cancer therapy. Clinical validation of the proteasome as a therapeutic target was achieved with bortezomib and has prompted the development of a second generation of proteasome inhibitors with improved pharmacological properties. This review summarises the main mechanisms of action of proteasome inhibitors in cancer, the development of proteasome inhibitors as therapeutic agents and the properties and progress of next generation proteasome inhibitors in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams J, Palombella VJ, Sausville EA, Johnson J, Destree A, Lazarus DD, Maas J, Pien CS, Prakash S, Elliott PJ (1999) Proteasome inhibitors: a novel class of potent and effective antitumor agents. Cancer Res 59:2615–2622

    PubMed  CAS  Google Scholar 

  • Baritaki S, Chapman A, Yeung K, Spandidos DA, PAlladino M, Bonavida B (2009) Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor NPI-0052: pivitol roles of Snail repression and RKIP induction. Oncogene 28:3573–3585

    Article  PubMed  CAS  Google Scholar 

  • Bektas N, Haaf A, Veeck J, Wild PJ, Luscher-Firzlaff J, Hartmann A, Knuchel R, Dahl E (2008) Tight correlation between expression of the Forkhead transcription factor FoxM1 and Her2 in human breast cancer. BMC Cancer 8:42

    Article  PubMed  Google Scholar 

  • Bennett MK, Kirk CJ (2008) Development of proteasome inhibitors in oncology and autoimmune diseases. Curr Opin Drug Discov Devel 11:616–625

    PubMed  CAS  Google Scholar 

  • Bhat UG, Halasi M, Gartel AL (2009) FoxM1 is a general target for proteasome inhibitors. PLoS One 4e6593

  • Chauhan D, Catley L, LiG PK, Hideshime T, Velanker M, Mitsiades C, Mitsiades N, Yasui H, Letai A, Ovaa H, Berkers C, Chao TH, Neuteboom ST, Richardson O, Palladino MA, Anderson KC (2005) A novel orally active proteasome inhibitor induces apoptosis in multiple myeloma cells with mechanisms distinct from bortezomib. Cancer Cell 8:407–419

    Article  PubMed  CAS  Google Scholar 

  • Chauhan D, Singh AV, Aujay M, Kirk CJ, Bandi M, Ciccarelli B, Raje N, Richardson P, Anderson KC (2010) A novel orally active proteasome inhibitor ONX 0912 triggers in vitro and in vivo cytotoxicity in multiple myeloma. Blood 116:4906–4915

    Google Scholar 

  • Chu IM, Hengst L, Joyce M (2008) The CDK inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8:253–267

    Article  PubMed  CAS  Google Scholar 

  • Crawford LJ, Windrum P, Magill L, Melo JV, McCallum L, McMullin MF, Ovaa H, Walker B, Irvine AE (2009) Proteasome proteolytic profile is linked to Bcr-Abl expression. Exp Hematol 37:357–366

    Article  PubMed  CAS  Google Scholar 

  • Cusack JC, Liu R, Xia L, Chao TH, Pien C, Niu W, Palombella VJ, Neuteboom ST, Palladino MA (2006) NPI-0052 enhances tumoricidal response to conventional cancer therapy in a colon cancer model. Clin Cancer Res 12:6758–6764

    Article  PubMed  CAS  Google Scholar 

  • Dasmahapatra G, Lembersky D, Kramer L, Fisher RI, Friedberg J, Dent P, Grant S (2010) The pan-HDAC inhibitor vorinostat potentiates the activity of the proteasome inhibitor carfilzomib in human DLBCL cells in vitro and in vivo. Blood 115:4478–4487

    Article  PubMed  CAS  Google Scholar 

  • Demo SD, Kirk CJ, Aujay MA, Buchholz TJ, Dajee M, Ho MN, Jiang J, Laidig GJ, Lewis ER, Parlati F, Shenk KD, Smyth MS, Sun CM, Vallona MK, Woo TM, Molineaux CJ, Bennett MK (2007) Antitumor activity of PR-171, a novel irreversible inhibitor of the proteasome. Cancer Res 67:6383–6391

    Article  PubMed  CAS  Google Scholar 

  • Ding WX, Ni HM, Chen X, Yu J, Zhang L, Yin XM (2007) A coordinated action of Bax, PUMA and p53 promotes MG-132—induced mitochondria activation and apoptosis in colon cancer cells. Mol Cancer Ther 6:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Dolcet X, Llobet D, Encinas M, Pallares J, Cabero A, Schoenenberger JA, Comella JX, Matias-Guiu X (2006) Proteasome inhibitors induce death but activate NF-kappaB on endometrial carcinoma cell lines and primary culture explants. J Biol Chem 281:22118–22130

    Article  PubMed  CAS  Google Scholar 

  • Dorsey BD, Iqbal M, Chatterjee S, Menta E, Bernardini R, Bernareggi A, Cassara PG, D’Arasmo G, Ferretti E, De Munari S, Oliva A, Pezzoni G, Allievi C, Strepponi I, Ruggeri B, Ator MA, Williams M, Mallamo JP (2008) Discovery of a potent, selective and orally active proteasome inhibitor for the treatment of cancer. J Med Cham 51:1068–1072

    Article  CAS  Google Scholar 

  • Drexler HC (1997) Activation of the cell death program by inhibition of proteasome function. Proc Nat Acad Sci 94:855–860

    Article  PubMed  CAS  Google Scholar 

  • Fribley A, Wang CU (2006) Proteasome inhibitor induces apoptosis through induction of endoplasmic reticulum stress. Cancer Biol Ther 5:745–748

    Google Scholar 

  • Fuchs O, Provaznikova D, Marinov I, Kuzelova K, Spika I (2009) Antiproliferative and proapoptotic effects of proteasome inhibitors and their combination with histone deacetylase inhibitors on leukemia cells. Cardiovasc Hematol Disord Drug Targets 9:62–77

    Article  PubMed  CAS  Google Scholar 

  • Gartel AL (2010) A new target for proteasome inhibitors: FoxM1. Expert Opin Investig Drugs 19:235–242

    Article  PubMed  CAS  Google Scholar 

  • Gemenetzidas E, Bose A, Riaz AM, Chaplin T, Young BD, Ali M, Sugden D, THurlow JK, Cheong SC, Teo SH, Wan H, Waseem A, PArkinason EK, Fortune F, Teh MT (2009) FoxM1 upregulation is an early event in human squamous cell carcinoma and it is enhanced by nicotine during malignant transformation. PLoS One 4:e4849

    Article  Google Scholar 

  • Gialmanidas IP, Bravou V, Amanetopoulou SG, Varakis J, Kourea H, Papadaki H (2009) OVerexpression of hedgehog pathway molecules and FOXM1 in non-small cell lung carcinomas. Lung Cancer 66:64–74

    Article  Google Scholar 

  • Groll M, Dtizel L, Lowe J, Stock D, Bochtler M, Wolf DH, Huber R (1997) Structure of the 20S proteasome from yeast at 2.4 A resolution. Nature 386:463–471

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Heinemeyer W, Jager S, Ulrich T, Bochtler M, Wolf DH, Huber R (1999) The catalytic sites of 20S proteasomes and their role in subunit maturation: A mutational and crystallographic study. Proc Nat Acad Sci 96:10975–10983

    Article  Google Scholar 

  • Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000a) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    Article  PubMed  CAS  Google Scholar 

  • Groll M, Kim KB, Kairies N, Huber R, Crews CM (2000b) Crystal structure of epoxomicin: 20S proteasome reveals a basis for selectivity of alpha, beta—epoxyketone proteasome inhibitors. J Am Chem Soc 122:1237–1238

    Article  CAS  Google Scholar 

  • Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Chauhan D, Podar K, Schlossman RL, Richardson P, Anderson KC (2001) Novel therapies targeting the myeloma cell and its bone marrow microenvironment. Semin Oncol 28:607–612

    Article  PubMed  CAS  Google Scholar 

  • Hideshima T, Ikeda H, Chauahan D, Okawa Y, Raje N, Podar K, Mitsiades C, Munshi NC, Richardson PG, Carrasco RD, Anderson KC (2009) Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood 114:1046–1052

    Article  PubMed  CAS  Google Scholar 

  • Hussain AR, Ahmed M, Ahmed SO, Al-Thari S, Khan AS, Razack S, Platanias LC, Al-Kuraya KS, Uddin S (2009) Proteasome inhibitor MG-132 mediated expression of p27Kip1 via S-phase kinase protein 2 degradation induces cell cycle couple apoptosis in primary effusion lymphoma cells. Leuk Lymphoma 50:1204–1213

    Article  PubMed  CAS  Google Scholar 

  • Imajoh-Ohmi S, Kawaguchi T, Sugiyama S, Tanaka K, Omura S, Kikuchi H (1995) Lactacystin, a specific inhibitor of the proteasome, induces apoptosis in human monoblast U937 cells. Biochem Biophys Res Cummun 217:1070–1077

    Article  CAS  Google Scholar 

  • Inui N, Kitagawa K, Miwa S, Hattori T, Chida K, Nakamura H, Kitagawa M (2003) High expression of Cks1 in human non-small cell lung carcinoma. Biochem Biophys Res Commun 303:978–984

    Article  PubMed  CAS  Google Scholar 

  • Jagannath S, Barlogie B, Berenson J, Siegel D, Irwin D, Richardson PG, Niesvizky R, Alexanian R, Limentani SA, Alsine M, Adams J, Kauffman M, Esseltine DL, Schenkein DP, Anderson KC (2004) A Phase 2 study of two doses of bortezomib in relapsed or refractory myeloma. Br J Haematol 127:165–172

    Article  PubMed  CAS  Google Scholar 

  • Kane RC, Farell AT, Sridhara R, Pazdur R (2006) United States Food and Drug Administration approval summary: bortezomib for the treatment of progressive multiple myeloma after one prior therapy. Clin Cancer Res 12:2955–2960

    Article  PubMed  CAS  Google Scholar 

  • Kane RC, Dagher R, Farell A, Ko CW, Sridhara R, Justice R, Pazdur R (2007) Bortezomib for the treatment of mantle cell lymphoma. Clin Cancer Res 13:5291–5294

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, Demo SD, Bennett MK, van Leeuwen FW, Chanan-Khan AA, Orlowski RZ (2007) Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin proteasome pathway against preclinical models of multiple myeloma. Blood 110:3281–3280

    Article  PubMed  CAS  Google Scholar 

  • Kuhn DJ, Hunsucker SA, Chen Q, Voorhees PM, Orlowski M, Orlowski RZ (2009) Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113:4667–4776

    Article  PubMed  CAS  Google Scholar 

  • Kupperman E, Lee EC, Cao Y, Bannerman B, Fitzgerald M, Berger A, Yu J, Yang Y, Hales P, Bruzzese F, Liu J, Blank J, Garcia K, Tsu C, Dick L, Fleming P, Yu L, Manfredi M, Rolfe M, Bolen J (2010) Evaluation of the proteasome inhibitor MLN9708 in preclinical models of human cancer. Cancer Res 70:1970–1980

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Dai B, Kang SH, Ban K, Huang FJ, Lang FF, Aldape KD, Xie TX, Pelloski CE, Xie K, Sawaya R, Huang S (2006) FoxM1B is overexpressed in human glioblastomas and critically regulates the tumorigenicity of glioma cells. Cancer Res 66:3593–3602

    Article  PubMed  CAS  Google Scholar 

  • Luqman S, Pezzuto JM (2010) NFkappaB: a promising target for natural products in cancer chemoprevention. Phytother Res 24:949–963

    PubMed  CAS  Google Scholar 

  • Macherla VR, Mitchell SS, Manam RR, Reed KA, Chao TH, Nicholson B, Deyanat-Yazdi G, Mai B, Jensen PR, Fenical WF, Neuteboom ST, Lam KS, Palladino MA, Potts BC (2005) Structure-activity relationaship studies of salinosporamide A (NPI-0052), a novel marine-derived proteasome inhibitor. J Med Chem 48:3684–3687

    Article  PubMed  CAS  Google Scholar 

  • McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Update 11:164–179

    Article  CAS  Google Scholar 

  • McGrath P, Jentsch S, Varshavsky A (1991) UBA 1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J 10:227–236

    PubMed  CAS  Google Scholar 

  • Miller CP, Ban K, McConkey DJ, Munsell M, Palladino M, Chandra J (2007) NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood 110:267–277

    Article  PubMed  CAS  Google Scholar 

  • Miller CP, Rudra S, Keating MJ, Wierda WG, Palladino M, Chandra J (2009) Caspase-8 dependent histone acetylation by a novel proteasome inhibitor, NPI-0052: a mechanism for synergy in leukemia cells. Blood 113:4289–4299

    Article  PubMed  CAS  Google Scholar 

  • Momand J, Jung D, Wilczynski S, Niland J (1998) The MDM2 gene amplification database. Nucleic Acids Res 26:3452–3459

    Article  Google Scholar 

  • Morgillo F, D’Aiuto E, Troiani T, MArtinelli E, Cascone T, De Palma R, Orditura M, De Vita F, Ciardiello F (2010) Antitumor activity of bortezomib in human cancer cells with acquired resistance to anti-epidermal growth factor receptor tyrosine kinase inhibitors. Lung Cancer Epub ahead of print

  • Motegi A, Murakawa Y, Takeda S (2009) The vital link between the ubiquitin-proteasome pathway and DNA repair: impacy on cancer therapy. Cancer Lett 283:1–9

    Article  PubMed  CAS  Google Scholar 

  • Nagy V, Dikic I (2010) Ubiquitin ligase complexes: from substrate selection to conjugational specificity. Biol Chem 391:163–169

    Article  PubMed  CAS  Google Scholar 

  • Navon A, Goldberg AL (2001) Proteins are unfolded on the surface of the ATPase ring before transport into the proteasome. Mol Cell 8:1339–1349

    Article  PubMed  CAS  Google Scholar 

  • Nawrocki ST, Bruns CJ, Harbison MT, Bold RJ, Gotsch BS, Abbruzzese JL, Elliott P, Adams J, McConkey DJ (2002) Effects of the proteasome inhibitor PS-341 on apoptosis and angiogenesis in orthotopic human pancreatic tumor xenografts. Mol Cancer Ther 1:1243–1253

    PubMed  CAS  Google Scholar 

  • Nawrocki ST, Carwe JS, Pino MS, Highshaw RA, Dunner K, Huang P, Abbruzzese JL, McConkey DJ (2005) Bortezomib sensitizes pancreatic cells to endoplasmic reticulum stress-mediated apoptosis. Cancer Res 65:11658–11666

    Article  PubMed  CAS  Google Scholar 

  • Nawrocki ST, Carew JS, Maclean KH, Courage JF, Huang P, Houghton JA, Cleveland JA, Giles FJ, McConkey DJ (2008) Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA. Blood 112:2917–2926

    Article  PubMed  CAS  Google Scholar 

  • O’Connor OA, Stewart AK, Vallone M, Molineaux CJ, Kunkel LA, Gerecitano JF, Orlowski RZ (2009) A phase 1 dose escalation study of the safety and pharmacokinetics of the novel proteasome inhibitors carfilzomib (PR-171) in patients with hematologic malignancies. Clin Cancer Res 15:7085–7091

    Article  PubMed  Google Scholar 

  • Obeng EA, Carlson LM, Gutman DM, Harrington WJ, Lee KP, Boise LH (2006) Proteasome inhibitors inude a terminal unfolded protein response in multiple myeloma cells. Blood 107:4907–4916

    Article  PubMed  CAS  Google Scholar 

  • Orlowski RZ, Eswara JR, Lafond-Walker A, Grever MR, Orlowski M, Dang CV (1998) Tumor growth inhibition induced by a murine model of human Burkitt’s lymphoma by a proteasome inhibitor. Cancer Res 59:2615–2622

    Google Scholar 

  • Orlowski RZ, Stinchcombe TE, Mitchell BS, Shea TC, Baldwin AS, Stahl S, Adams J, Esseltine DL, Elliott PJ, Pien CS, Guerciolini R, Anderson JK, Depcit-Smaith ND, Bhagat R, Lehman MJ, Novick SC, O’Connor OA, Soignet SL (2002) Phase I trial of the proteasome inhibitor PS341 in patients with refractory haematological malignancies. J Clin Oncol 20:4420–4427

    Article  PubMed  CAS  Google Scholar 

  • Piva R, Ruggeri B, Williams M, Costa G, Tamagno I, Ferrero D, Giai V, Coscia M, Peola S, Massaia M, Pezzoni G, Allievi C, Pescalli N, Cassin M, di Giovine S, Nicoli P, de Feudis P, Strepponi I, Roato I, Ferracini R, Bussolati B, Camussi G, Jones-Bolin S, Hunter K, Zhao H, Neri A, Palumbo A, Berkers C, Ovaa H, Bernareggi A, Inghirami G (2008) CEP-18770: A novel, orally active proteasome inhibitor with a tumor-selective pharmacological profile competitive with bortezomib. Blood 111:2765–2775

    Article  PubMed  CAS  Google Scholar 

  • Qin JZ, Ziffra J, Stennett L, Bodner B, Bonish BK, Chaturvedi V, Bennett F, Pollock PM, Trent JM, Hendrix MJ, Rizzo P, Miele L, Nickoloff BJ (2005) Proteasome inhibitors trigger NOXA-mediated apoptosis in melanoma and myeloma cells. Cancer Res 65:6282–6293

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Barlogie B, Berenson J, Singhal S, Jaganath S, Irwin D, Rajkumar SV, Srkalovic G, Alsina M, Alexanian R, Siegel D, Orlowski RZ, Kuter D, Limentani SA, Lee S, Hideshima T, Esseltine DL, Kauffman M, Adams J, Schenkein DP, Anderson KC (2003) A phase 2 study of bortezomib in relapsed, refractory myeloma. N Engl J Med 348:2609–2617

    Article  PubMed  CAS  Google Scholar 

  • Richardson PG, Sonneyeld P, Schuster MW, Irwin D, Stadtmauer EA, Facon T, Harousseau JL, Ben-Yehuda D, Lonial S, Goldschmidt H, Reece D, San-Miguel JF, Blade J, Boccadoro M, Kavenagh J, Dalton WS, Boral AL, Esseltine DL, Porter JB, Schenkein D, Anderson KC (2005) Assessment of Proteasome Inhibition for Extending Remission (APEX) Investigators: bortezomib or high dose dexamethasone for relapsed multiple myeloma. N Engl J Med 352:2487–2498

    Article  PubMed  CAS  Google Scholar 

  • Roccaro AM, Hideshima T, Raje N, Kumar S, Ishitsuka K, Yasui H, Shiraishi N, Ribatti D, Nico B, Vacca A, Dammacco F, Richardson PG, Anderson KC (2006) Bortezomib mediates antiangiogenesis in multiple myeloma via direct and indirect effects on endothelial cells. Cancer Res 66:184–191

    Article  PubMed  CAS  Google Scholar 

  • Roccaro AM, Leleu X, Sacco A, Jia X, Melham M, Moreau AS, Ngo HT, Runnels J, Azab A, Azab F, Burwick N, Farag M, Treon SP, Palladino MA, Hideshima T, Chauhan D, Anderson KC, Ghobrial IM (2008) Dual targeting of the proteasome regulates survival and homing in Waldenstrom macroglobulinemia. Blood 111:4752–4763

    Google Scholar 

  • Roccaro AM, Sacco A, Aujay M, Ngo HT, Azab AK, Quang P, Maiso P, Runnels J, Anderson KC, Demo S, Ghobrial IM (2010) Selective inhibition of chymotrypsin-like activity of the immunoproteasome and constitutive proteasome in Waldenstrom macroglobulinemia. Blood 115:4051–4060

    Article  PubMed  CAS  Google Scholar 

  • Rock KL, Goldberg AL (1999) Degradation of cell proteins and the generation of MHC class 1-presented peptides. Annu Rev Immunol 17:739–799

    Article  PubMed  CAS  Google Scholar 

  • Ruiz S, Krupnik Y, Keating M, Chandra J, Pallidino M, McConkey D (2006) The proteasome inhibitor NPI-0052 is a more effective inducer of apoptosis than bortezomib in lymphocytes from patients with chronic lymphocytic leukemia. Mol Cancer Ther 5:1836–1843

    Article  PubMed  CAS  Google Scholar 

  • Sanchez E, Li M, Steinberg JA, Wang C, Shen J, Bonavida B, Li ZW, Chen H, Berenson JR (2010) The proteasome inhibitor CEP-18770 enhances the anti-myeloma activity of bortezomib and melphelan. Br J Haematol 148:569–581

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  PubMed  CAS  Google Scholar 

  • Shinohara K, Tomoika M, Nakano H, Tone S, Ito H, Kawahima S (1996) Apoptosis induction resulting from proteasome inhibition. Biochem J 317:385–388

    PubMed  CAS  Google Scholar 

  • Singh AV, Palladino MA, Lloyd GK, Potts BC, Chauhan D, Anderson KC (2010a) Pharmacodynamic and efficacy studies of the novel proteasome inhibitor NPI-0052 (marizomib) in a human plasmacytoma xenograft murine model. Br J Haematol 149:550–559

    Article  CAS  Google Scholar 

  • Singh AV, Bandi M, Aujay MA, Kirk CJ, Hark DE, Raje N, Chauhan D, Anderson KC (2010b) PR-924, a selective inhibitor of the immunoproteasome subunit LMP-7, blocks multiple myeloma cell growth both in vitro and in vivo. Br J Haematol 152:155–163

    Google Scholar 

  • Sloss CM, Wang F, Liu R, Xia L, Houston M, Ljungman D, Palladino MA, Cusack CJ (2008) Proteasome inhibition activates epidermal growth factor receptor (EGFR) and EGFR-independent mitogenic kinase signaling pathways in pancreatic cancer cells. Clin Cancer Res 14:5116–5123

    Article  PubMed  CAS  Google Scholar 

  • Strauss SJ, Higginbottom K, Juliger S, Maharaj L, Allen P, Schenkein D, Lister TA, Joel SP (2007) The proteasome inhibitor bortezomib acts independently of p53 and induces cell death via apoptosis and mitotic catastrophe in B-cell lymphoma cell lines. Cancer Res 67:2783–2790

    Article  PubMed  CAS  Google Scholar 

  • Tamura D, Arao T, Tanaka K, Kaneda H, Matsumoto K, Kudo K, Aomatsu K, Fujita Y, Watanabe T, Saijo N, Kotani Y, NishimuraY NK (2010) Bortezomib potentially inhibits cellular growth of vascular endothelial cells through suppression of G2/M transition. Cancer Sci 101:1403–1408

    Article  PubMed  CAS  Google Scholar 

  • Traenckner EB, Wilk S, Baeuerle PA (1994) A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of i-kappa B-alpha that is still bound to NF-kappa B. EMBO J 15:5433–5441

    Google Scholar 

  • Vaziri SA, Grabowski DR, Hill J, Rybicki LR, Burk R, Bukowski RM, Ganapathi MK, Gamapathi R (2009) Inhibition of proteasome activity by bortezomib in renal cancer cells is p53 and VHL independent. Anticancer Res 29:2961–2969

    PubMed  CAS  Google Scholar 

  • Wang Z, Banerjee S, Kong D, Li Y, Sarker FH (2007) Downregulation of Forkhead Box M1 transcription factor leads to the inhibition of invasion and angiogenesis of pancreatic cancer cells. Cancer Res 67:8293–8300

    Article  PubMed  CAS  Google Scholar 

  • Williams SA, McConkey DJ (2003) The proteasome inhibitor bortezomib stabilizes a novel active form of p53 in human LNCaP-Pro5 cancer cells. Cancer Res 63:7338–7344

    PubMed  CAS  Google Scholar 

  • Yin D, Zhou H, Kumagai T, Liu G, Ong JM, Black KL, Koeffler HP (2005) Proteasome inhibitor PS-341 causes cell growth arrest and apoptosis in human glioblastoma multiforme (GBM). Oncogene 24:344–354

    Article  PubMed  CAS  Google Scholar 

  • Yoshida Y, Wang IC, Yoder HM, Davidson NO, Costa RH (2007) The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer. Gastroenterology 132:1420–1431

    Article  PubMed  CAS  Google Scholar 

  • Zhou HJ, Aujay MA, Bennett MK, Dajee M, Demo SD, Fang Y, Ho MN, Jiang J, Kirk CJ, Laidig GJ, Lewis ER, Lu Y, Muchamuel T, Parlati F, Ring E, Shenk KD, Shields J, Shwonek PJ, Stanton T, Sun CM, Sylvain C, Woo TM, Yang J (2009) Design and synthesis of an orally bioavailable and selective peptide epoxyketone proteasome inhibitor (PR-047). J Med Chem 52:3028–3038

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra E. Irvine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crawford, L.J., Walker, B. & Irvine, A.E. Proteasome inhibitors in cancer therapy. J. Cell Commun. Signal. 5, 101–110 (2011). https://doi.org/10.1007/s12079-011-0121-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-011-0121-7

Keywords

Navigation