Skip to main content
Log in

A review on resource allocation techniques in D2D communication for 5G and B5G technology

  • Published:
Peer-to-Peer Networking and Applications Aims and scope Submit manuscript

Abstract

Device to Device communication is an important aspect of the fifth-generation(5G) and beyond fifth-generation (B5G) wireless networks. 5G facilitates network connectivity among a large number of devices. This tremendous growth in the number of devices requires a large number of spectrum resources to support a variety of applications and also lays a huge burden on the Base Station. D2D skips the need to forward the data to the Base Station and helps the devices to take part in direct Peer-to-Peer (P2P) transmission. This enables high-speed data transmission, efficient information transmission with improved latency and most importantly is used to offload the traffic that is laid on the Base Station. D2D has many practical issues and challenges that are briefly explained in this paper, out of which resource allocation is the main area of focus as it plays an important role in the performance of the system. The optimal allocation of resources such as power, time and spectrum can improve the system performance. Therefore, in order to identify the open research issues in the field of resource allocation in D2D communication, a detailed survey is needed. In this paper, various resource allocation algorithms and methodologies have been seriously analysed and evaluated based on the degree of involvement of the Base Station to figure out the research gap and to provide a strong theoretical basis for the research problems related to resource allocation in D2D communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8
Fig. 9

Similar content being viewed by others

References

  1. Agiwal M, Roy A, Saxena N (2016) Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tutorials 18:1617–1655

    Article  Google Scholar 

  2. Gupta A, Jha RK (2015) A survey of 5G network: architecture and emerging technologies. IEEE Access 3:1206–1232

    Article  Google Scholar 

  3. Javed M, Siddiqui AT (2017) Transformation of mobile communication network from 1G to 4G and 5G. Int J Adv Res Comput Sci

  4. Wang CX, Haider F, Gao X, You XH, Yang Y, Yuan D, Aggoune H, Haas H, Fletcher S, Hepsaydir E (2014) Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag 52:122–130. https://doi.org/10.1109/MCOM.2014.6736752

    Article  Google Scholar 

  5. Gandotra P, Jha RK (2016) Device-to-device communication in cellular networks: a survey. J Netw Comput Appl 71:99–117

    Article  Google Scholar 

  6. Chakraborty C, Rodrigues JJCP (2020) A comprehensive review on device-to-device communication paradigm: trends, challenges and applications. Wirel Pers Commun

  7. Sun Y, Peng M, Zhou Y, Huang Y, Mao S (2019) Application of machine learning in wireless networks: key techniques and open issues. IEEE Commun Surv Tutorials 21:3072–3108. https://doi.org/10.1109/COMST.2019.2924243

    Article  Google Scholar 

  8. Asadi A, Wang Q, Mancuso V (2014) A survey on device-to-device communication in cellular networks. IEEE Commun Surv Tutorials 16:1801–1819. https://doi.org/10.1109/COMST.2014.2319555

    Article  Google Scholar 

  9. Pedhadiya MK, Jha RK, Bhatt HG (2019) Device to device communication: a survey. J Netw Comput Appl 129:71–89

    Article  Google Scholar 

  10. Kar UN, Sanyal DK (2018) An overview of device-to-device communication in cellular networks. ICT Express

  11. Liu J, Kato N, Ma J, Kadowaki N (2015) Device-to-device communication in LTE-advanced networks: a survey. IEEE Commun Surv Tutorials 17:1923–1940. https://doi.org/10.1109/COMST.2014.2375934

    Article  Google Scholar 

  12. ElSawy H, Hossain E, Alouini MS (2014) Analytical modeling of mode selection and power control for underlay D2D communication in cellular networks. IEEE Trans Commun 62:4147–4161. https://doi.org/10.1109/TCOMM.2014.2363849

    Article  Google Scholar 

  13. Pei Y, Liang YC (2013) Resource allocation for device-to-device communications overlaying two-way cellular networks. IEEE Trans Wirel Commun 12:3611–3621. https://doi.org/10.1109/TWC.2013.061713.121956

    Article  Google Scholar 

  14. Meng Y, Jiang C, Chen HH, Ren Y (2017) Cooperative device-to-device communications: social networking perspectives. IEEE Netw 31:38–44. https://doi.org/10.1109/MNET.2017.1600081NM

    Article  Google Scholar 

  15. Datsika E, Antonopoulos A, Zorba N, Verikoukis C (2016) Green cooperative device-to-device communication: a social-aware perspective. IEEE Access 4:3697–3707

    Article  Google Scholar 

  16. Bello O, Zeadally S (2016) Intelligent device-to-device communication in the internet of things. IEEE Syst J 10:1172–1182. https://doi.org/10.1109/JSYST.2014.2298837

    Article  Google Scholar 

  17. Xiang X, Liu W, Xiong NN, Song H, Liu A, Wang T (2018) Duty cycle adaptive adjustment based device to device (D2D) communication scheme for WSNs. IEEE Access 6:76339–76373. https://doi.org/10.1109/ACCESS.2018.2882918

    Article  Google Scholar 

  18. Hatamian M, Ahmadpoor SS, Berenjian S et al (2016) A centralized evolutionary clustering protocol for wireless sensor networks. In: 6th international conference on computing, communications and networking technologies, ICCCNT 2015

    Google Scholar 

  19. Ali K, Nguyen HX, Vien QT, Shah P, Chu Z (2018) Disaster management using D2D communication with power transfer and clustering techniques. IEEE Access 6:14643–14654. https://doi.org/10.1109/ACCESS.2018.2793532

    Article  Google Scholar 

  20. Wei L, Hu RQ, Qian Y, Wu G (2016) Energy efficiency and spectrum efficiency of multihop device-to-device communications underlaying cellular networks. IEEE Trans Veh Technol 65:367–380. https://doi.org/10.1109/TVT.2015.2389823

    Article  Google Scholar 

  21. Yin R, Zhong C, Yu G, Zhang Z, Wong KK, Chen X (2016) Joint Spectrum and power allocation for D2D communications Underlaying cellular networks. IEEE Trans Veh Technol 65:2182–2195. https://doi.org/10.1109/TVT.2015.2424395

    Article  Google Scholar 

  22. Guo S, Zhou X, Xiao S, Sun M (2019) Fairness-aware energy-efficient resource allocation in D2D communication networks. IEEE Syst J 13:1273–1284. https://doi.org/10.1109/JSYST.2018.2838539

    Article  Google Scholar 

  23. Li X, Shankaran R, Orgun MA, Fang G, Xu Y (2018) Resource allocation for underlay D2D communication with proportional fairness. IEEE Trans Veh Technol 67:6244–6258. https://doi.org/10.1109/TVT.2018.2817613

    Article  Google Scholar 

  24. Jameel F, Hamid Z, Jabeen F, Zeadally S, Javed MA (2018) A survey of device-to-device communications: research issues and challenges. IEEE Commun Surv Tutorials 20:2133–2168. https://doi.org/10.1109/COMST.2018.2828120

    Article  Google Scholar 

  25. Zhang B, Li Y, Jin D, Hui P, Han Z (2015) Social-aware peer discovery for D2D communications underlaying cellular networks. IEEE Trans Wirel Commun 14:2426–2439. https://doi.org/10.1109/TWC.2014.2386865

    Article  Google Scholar 

  26. Wang R, Yang H, Wang H, Wu D (2016) Social overlapping community-aware neighbor discovery for D2D communications. IEEE Wirel Commun 23:28–34. https://doi.org/10.1109/MWC.2016.7553023

    Article  Google Scholar 

  27. Doppler K, Yu CH, Ribeiro CB, Jänis P (2010) Mode selection for device-to-device communication underlaying an LTE-advanced network. In: IEEE Wireless Communications and Networking Conference, WCNC

  28. Yu G, Xu L, Feng D, Yin R, Li GY, Jiang Y (2014) Joint mode selection and resource allocation for device-to-device communications. IEEE Trans Commun 62:3814–3824. https://doi.org/10.1109/TCOMM.2014.2363092

    Article  Google Scholar 

  29. Wang M, Yan Z (2017) A survey on security in D2D communications. Mob Networks Appl 22:195–208. https://doi.org/10.1007/s11036-016-0741-5

    Article  Google Scholar 

  30. Haus M, Waqas M, Ding AY, Li Y, Tarkoma S, Ott J (2017) Security and privacy in device-to-device (D2D) communication: a review. IEEE Commun Surv Tutorials 19:1054–1079. https://doi.org/10.1109/COMST.2017.2649687

    Article  Google Scholar 

  31. Zhang A, Lin X (2017) Security-aware and privacy-preserving D2D communications in 5G. IEEE Netw 31:70–77. https://doi.org/10.1109/MNET.2017.1600290

    Article  Google Scholar 

  32. Safdar GA, Ur-Rehman M, Muhammad M, Imran MA, Tafazolli R (2016) Interference mitigation in D2D communication underlaying LTE-A network. IEEE Access 4:7967–7987. https://doi.org/10.1109/ACCESS.2016.2621115

    Article  Google Scholar 

  33. Noura M, Nordin R (2016) A survey on interference management for device-to-device (D2D) communication and its challenges in 5G networks. J Netw Comput Appl 71:130–150. https://doi.org/10.1016/j.jnca.2016.04.021

    Article  Google Scholar 

  34. Hassan Y, Hussain F, Hossen S et al (2017) Interference minimization in D2D communication underlaying cellular networks. IEEE Access 5:22471–22484. https://doi.org/10.1109/ACCESS.2017.2763424

    Article  Google Scholar 

  35. Phunchongharn P, Hossain E, Kim D (2013) Resource allocation for device-to-device communications underlaying LTE-advanced networks. IEEE Wirel Commun 20:91–100. https://doi.org/10.1109/MWC.2013.6590055

    Article  Google Scholar 

  36. Yu CH, Doppler K, Ribeiro CB, Tirkkonen O (2011) Resource sharing optimization for device-to-device communication underlaying cellular networks. IEEE Trans Wirel Commun 10:2752–2763. https://doi.org/10.1109/TWC.2011.060811.102120

    Article  Google Scholar 

  37. Mach P, Becvar Z, Vanek T (2015) In-band device-to-device communication in OFDMA cellular networks: a survey and challenges. IEEE Commun Surv Tutorials. 17:1885–1922. https://doi.org/10.1109/COMST.2015.2447036

    Article  Google Scholar 

  38. Wang K, Li H, Yu FR, Wei W (2016) Virtual resource allocation in software-defined information-centric cellular networks with device-to-device communications and imperfect CSI. IEEE Trans Veh Technol 65:10011–10021. https://doi.org/10.1109/TVT.2016.2529660

    Article  Google Scholar 

  39. Mishra PK, Pandey S, Biswash SK (2016) Efficient resource management by exploiting D2D communication for 5G networks. IEEE Access 4:9910–9922. https://doi.org/10.1109/ACCESS.2016.2602843

    Article  Google Scholar 

  40. Ningombam DD, Shin S (2018) Distance-constrained outage probability analysis for device-to-device communications underlaying cellular networks with frequency reuse factor of 2. Computers 7. https://doi.org/10.3390/computers7040050

  41. Hussain F, Hassan MY, Hossen MS, Choudhury S (2018) System capacity maximization with efficient resource allocation algorithms in D2D communication. IEEE Access 6:32409–32424. https://doi.org/10.1109/ACCESS.2018.2839190

    Article  Google Scholar 

  42. Ahmad M, Ali M, Naeem M, Ahmed A, Iqbal M, Ejaz W, Anpalagan A (2020) Device-centric communication in IoT: An energy efficiency perspective. Trans Emerg Telecommun Technol. https://doi.org/10.1002/ett.3750

  43. Awan AY, Ali M, Naeem M, Qamar F, Sial MN (2020) Joint network admission control, mode assignment, and power allocation in energy harvesting aided D2D communication. IEEE Trans Ind Informatics 16:1914–1923. https://doi.org/10.1109/TII.2019.2922667

    Article  Google Scholar 

  44. Zhao W, Wang S (2015) Resource sharing scheme for device-to-device communication Underlaying cellular networks. IEEE Trans Commun 63:4838–4848. https://doi.org/10.1109/TCOMM.2015.2495217

    Article  Google Scholar 

  45. Zhao Y, Li Y, Zhang H, Ge N, Lu J (2016) Fundamental tradeoffs on energy-aware D2D communication Underlaying cellular networks: a dynamic graph approach. IEEE J Sel Areas Commun 34:864–882. https://doi.org/10.1109/JSAC.2016.2544558

    Article  Google Scholar 

  46. Singh D, Ghosh SC (2019) Mobility-aware relay selection in 5G D2D communication using stochastic model. IEEE Trans Veh Technol 68:2837–2849. https://doi.org/10.1109/TVT.2019.2893995

    Article  Google Scholar 

  47. Chen CY, Sung CA, Chen HH (2019) Capacity maximization based on optimal mode selection in multi-mode and multi-pair D2D communications. IEEE Trans Veh Technol 68:6524–6534. https://doi.org/10.1109/TVT.2019.2913987

    Article  Google Scholar 

  48. Thieu QT, Hsieh HY (2018) Outage protection for cellular-mode users in device-to-device communications through stochastic optimization. Comput Netw 132:145–160. https://doi.org/10.1016/j.comnet.2018.01.006

    Article  Google Scholar 

  49. Gao C, Tang J, Sheng X et al (2016) Enabling green wireless networking with device-to-device links: a joint optimization approach. In: IEEE Transactions on Wireless Communications

  50. Cheng Y, Gu Y, Lin X (2014) Power and channel allocation for device-to-device enabled cellular networks. J Comput Inf Syst. https://doi.org/10.12733/jcis8765

  51. Sheng M, Li Y, Wang X, Li J, Shi Y (2016) Energy efficiency and delay tradeoff in device-to-device communications underlaying cellular networks. IEEE J Sel Areas Commun 34:92–106. https://doi.org/10.1109/JSAC.2015.2471395

    Article  Google Scholar 

  52. Meshgi H, Zhao D, Zheng R (2017) Optimal resource allocation in multicast device-to-device communications Underlaying LTE networks. IEEE Trans Veh Technol 66:8357–8371. https://doi.org/10.1109/TVT.2017.2691470

    Article  Google Scholar 

  53. Song Y, Kong PY, Kim Y, Baek S, Choi Y (2019) Cellular-assisted D2D Communications for Advanced Metering Infrastructure in smart gird. IEEE Syst J 13:1347–1358. https://doi.org/10.1109/JSYST.2019.2891719

    Article  Google Scholar 

  54. Della Penda D, Fu L, Johansson M (2017) Energy efficient D2D communications in dynamic TDD systems. IEEE Trans Commun 65:1260–1273. https://doi.org/10.1109/TCOMM.2016.2616138

    Article  Google Scholar 

  55. Khamfroush H, Lucani DE, Pahlevani P, Barros J (2015) On optimal policies for network-coded cooperation: theory and implementation. IEEE J Sel Areas Commun 33:199–212. https://doi.org/10.1109/JSAC.2014.2384291

    Article  Google Scholar 

  56. Cai Y, Yu FR, Liang C, Sun B, Yan Q (2016) Software-defined device-to-device (D2D) communications in virtual wireless networks with imperfect network state information (NSI). IEEE Trans Veh Technol 65:7349–7360. https://doi.org/10.1109/TVT.2015.2483558

    Article  Google Scholar 

  57. Gu J, Bae SJ, Hasan SF, Chung MY (2016) Heuristic algorithm for proportional fair scheduling in D2D-cellular systems. IEEE Trans Wirel Commun 15:769–780. https://doi.org/10.1109/TWC.2015.2477998

    Article  Google Scholar 

  58. Swain SN, Thakur R, Chebiyyam SRM (2017) Coverage and rate analysis for facilitating machine-to-machine communication in LTE-A networks using device-to-device communication. IEEE Trans Mob Comput 16:3014–3027. https://doi.org/10.1109/TMC.2017.2684162

    Article  Google Scholar 

  59. Mumtaz S, Saidul Huq KM, Rodriguez J, Frascolla V (2016) Energy-efficient interference management in LTE-D2D communication. IET Signal Process 10:197–202. https://doi.org/10.1049/iet-spr.2015.0201

    Article  Google Scholar 

  60. Han Q, Yang B, Wang X (2019) Online and robust resource allocation for D2D communications assisted by green relays. IET Commun 13:3547–3557. https://doi.org/10.1049/iet-com.2019.0363

    Article  Google Scholar 

  61. Takshi H, Doǧan G, Arslan H (2018) Joint optimization of device to device resource and power allocation based on genetic algorithm. IEEE Access 6:21173–21183. https://doi.org/10.1109/ACCESS.2018.2826048

    Article  Google Scholar 

  62. Chen J, Deng Y, Jia J, Dohler M, Nallanathan A (2018) Cross-layer QoE optimization for D2D communication in CR-enabled heterogeneous cellular networks. IEEE Trans Cogn Commun Netw 4:719–734. https://doi.org/10.1109/TCCN.2018.2868371

    Article  Google Scholar 

  63. Perez-Romero J, Sanchez-Gonzalez J, Agusti R, Lorenzo B, Glisic S (2016) Power-efficient resource allocation in a heterogeneous network with cellular and D2D capabilities. IEEE Trans Veh Technol 65:9272–9286. https://doi.org/10.1109/TVT.2016.2517700

    Article  Google Scholar 

  64. Hasan M, Hossain E, Kim DI (2014) Resource allocation under channel uncertainties for relay-aided device-to-device communication underlaying LTE-A cellular networks. IEEE Trans Wirel Commun 13:2322–2338. https://doi.org/10.1109/TWC.2014.031314.131651

    Article  Google Scholar 

  65. Shahbazpanahi S, Dong M (2012) Achievable rate region under joint distributed beamforming and power allocation for two-way relay networks. IEEE Trans Wirel Commun 11:4026–4037. https://doi.org/10.1109/TWC.2012.092112.112072

    Article  Google Scholar 

  66. Huang J, Xing CC, Qian Y, Haas ZJ (2018) Resource allocation for multicell device-to-device communications Underlaying 5G networks: a game-theoretic mechanism with incomplete information. IEEE Trans Veh Technol 67:2557–2570. https://doi.org/10.1109/TVT.2017.2765208

    Article  Google Scholar 

  67. Chen Y, Ai B, Niu Y, Guan K, Han Z (2018) Resource allocation for device-to-device communications Underlaying heterogeneous cellular networks using coalitional games. IEEE Trans Wirel Commun 17:4163–4176. https://doi.org/10.1109/TWC.2018.2821151

    Article  Google Scholar 

  68. Zhu K, Hossain E (2015) Joint mode selection and Spectrum partitioning for device-to-device communication: a dynamic Stackelberg game. IEEE Trans Wirel Commun 14:1406–1420. https://doi.org/10.1109/TWC.2014.2366136

    Article  Google Scholar 

  69. Hu J, Heng W, Zhu Y, Wang G, Li X, Wu J (2018) Overlapping coalition formation games for joint interference management and resource allocation in D2D communications. IEEE Access 6:6341–6349. https://doi.org/10.1109/ACCESS.2018.2800159

    Article  Google Scholar 

  70. Yang T, Zhang R, Cheng X, Yang L (2017) Graph coloring based resource sharing (GCRS) scheme for D2D communications Underlaying full-duplex cellular networks. IEEE Trans Veh Technol 66:7506–7517. https://doi.org/10.1109/TVT.2017.2657791

    Article  Google Scholar 

  71. Zhang Y, Zheng J, Lu PS, Sun C (2017) Interference graph construction for cellular D2D communications. IEEE Trans Veh Technol 66:3293–3305. https://doi.org/10.1109/TVT.2016.2587338

    Article  Google Scholar 

  72. Maghsudi S, Stanczak S (2016) Hybrid centralized-distributed resource allocation for device-to-device communication underlaying cellular networks. In: IEEE Transactions on Vehicular Technology

  73. Zhang A, Chen J, Zhou L, Yu S (2016) Graph theory-based QoE-driven cooperation stimulation for content dissemination in device-to-device communication. IEEE Trans Emerg Top Comput 4:556–567. https://doi.org/10.1109/TETC.2015.2430816

    Article  Google Scholar 

  74. Subramani M, Kumaravelu VB (2019) A quality-aware fuzzy-logic-based vertical handover decision algorithm for device-to-device communication. Arab J Sci Eng 44:2413–2425. https://doi.org/10.1007/s13369-018-3560-0

    Article  Google Scholar 

  75. Xue J, Chen P (2016) A resource allocation scheme based on user grouping for device-to-device communication. J Comput Theor Nanosci 13:3749–3756. https://doi.org/10.1166/jctn.2016.5207

    Article  Google Scholar 

  76. Xu J, Guo C (2019) Resource allocation for real-time D2D communications underlaying cellular networks. IEEE Trans Mob Comput 18:960–973. https://doi.org/10.1109/TMC.2018.2849743

    Article  Google Scholar 

  77. Mishra PK, Pandey S, Udgata SK, Biswash SK (2018) Device-centric resource allocation scheme for 5G networks. Phys Commun 26:175–184. https://doi.org/10.1016/j.phycom.2017.12.003

    Article  Google Scholar 

  78. Rudenko O, Liu Y, Wang C, Rahardja S (2019) An extensive game-based resource allocation for securing D2D underlay communications. IEEE Access 7:43052–43062. https://doi.org/10.1109/ACCESS.2019.2905581

    Article  Google Scholar 

  79. Elsherief M, Elwekeil M, Abd-Elnaby M (2019) Resource and power allocation for achieving rate fairness in D2D communications overlaying cellular networks. Wirel Networks 25:4049–4058. https://doi.org/10.1007/s11276-018-01935-y

    Article  Google Scholar 

  80. Mishra PK, Kumar A, Pandey S, Singh VP (2018) Hybrid resource allocation scheme in multi-hop device-to-device communication for 5G networks. Wirel Pers Commun 103:2553–2573. https://doi.org/10.1007/s11277-018-5946-4

    Article  Google Scholar 

  81. Li J, Lei G, Manogaran G, Mastorakis G, X. Mavromoustakis C (2019) D2D communication mode selection and resource optimization algorithm with optimal throughput in 5G network. IEEE Access 7:25263–25273. https://doi.org/10.1109/ACCESS.2019.2900422

    Article  Google Scholar 

  82. Gandotra P, Jha RK, Jain S (2018) Sector-based radio resource allocation (SBRRA) algorithm for better quality of service and experience in device-to-device (D2D) communication. IEEE Trans Veh Technol 67:5750–5765. https://doi.org/10.1109/TVT.2017.2787767

    Article  Google Scholar 

  83. Lucas-Estañ MC, Gozalvez J (2017) Distributed radio resource allocation for device-to-device communications underlaying cellular networks. J Netw Comput Appl 99:120–130. https://doi.org/10.1016/j.jnca.2017.09.013

    Article  Google Scholar 

  84. Khan M, Alam M, Moullec Y, Yaacoub E (2017) Throughput-aware cooperative reinforcement learning for adaptive resource allocation in device-to-device communication. Futur Internet 9. https://doi.org/10.3390/fi9040072

  85. Jiang C, Zhang H, Ren Y, Han Z, Chen KC, Hanzo L (2017) Machine learning paradigms for next-generation wireless networks. IEEE Wirel Commun 24:98–105. https://doi.org/10.1109/MWC.2016.1500356WC

    Article  Google Scholar 

  86. Zia K, Javed N, Sial MN, Ahmed S, Pirzada AA, Pervez F (2019) A distributed multi-agent RL-based autonomous Spectrum allocation scheme in D2D enabled multi-tier HetNets. IEEE Access 7:6733–6745. https://doi.org/10.1109/ACCESS.2018.2890210

    Article  Google Scholar 

  87. Morocho-Cayamcela ME, Lee H, Lim W (2019) Machine learning for 5G/B5G mobile and wireless communications: potential, limitations, and future directions. IEEE Access 7:137184–137206. https://doi.org/10.1109/ACCESS.2019.2942390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandakumar S.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection: Special Issue on P2P Computing for Beyond 5G Network and Internet-of-Everything

Guest Editors: Prakasam P, Ajayan John, Shohel Sayeed

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakumar, S., S, N. A review on resource allocation techniques in D2D communication for 5G and B5G technology. Peer-to-Peer Netw. Appl. 14, 243–269 (2021). https://doi.org/10.1007/s12083-020-00962-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12083-020-00962-x

Keywords

Navigation