Skip to main content

Advertisement

Log in

Cardiac toxicity: old and new issues in anti-cancer drugs

  • Reviews
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Although rare, cardiotoxicity is a significant complication of cancer treatment. The incidence and severity of cardiovascular side effects are dependent on the type of drugs used, dose and schedule employed, and age of patients, as well as the presence of coexisting cardiac diseases and previous mediastinal irradition. Classically, anthracyclines are among one of the most active agents in oncology, but their use is often hampered by their cumulative dose-limiting cardiotoxicity. In the past decade, combination therapy with new drugs such as taxanes of anti-EGFR, and Her-2 therapy as a single agent have also resulted in unexpected cardiotoxicity. Cardiac damage can be secondary to an alteration of cardiac rhythm, changes in blood pressure and ischaemia, and can also alter the ability of the heart to contract and/or relax. The clinical spectrum of these toxicities can range from subclinical abnormalities to being catastrophic, life-threatening and sometimes fatal. Knowledge of this toxicity can aid clinicians to choose the optimal and least toxic regimen suitable for an individual patient. In this work we present an exhaustive review of the cardiovascular side effects associated to new anticancer drugs, from new formulations of anthracyclines to tyrosine kinase inhibitors and monoclonal antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Corna G, Santambrogio P, Mintoti G, Cairo G (2004). Doxorubicin paradoxically protects cardiomyocytes against iron-mediated toxicity: role of reactive oxygen species and ferritin. J Biol Chem 279:13738–13745

    Article  PubMed  CAS  Google Scholar 

  2. Von Hoff DD, Layard MW, Basa P et al (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717

    Google Scholar 

  3. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97:2869–2879

    Article  PubMed  CAS  Google Scholar 

  4. Felker GM, Thompson RE, Hare JM et al (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077–1084

    Article  PubMed  CAS  Google Scholar 

  5. Takemura G, Fujiwara H (2007) Doxorubicin-induced cardiomyopathy from the cardiotoxic mechanisms to management. Prog Cardiovasc Dis 49:330–352

    Article  PubMed  CAS  Google Scholar 

  6. Fu P, Arcasoy MO (2007) Erythropoietin protects cardiac myocytes against anthracycline-induced apoptosis. Biochem Biophys Res Commun 354:372–378

    Article  PubMed  CAS  Google Scholar 

  7. Silber JH, Canan A, Clark BJ et al (2001) Design and baseline characteristics for the ACE inhibitor after anthracycline (AAA) study of cardiac dysfunction in long-term pediatric cancer survivors. Am Heart J 142:577

    Article  PubMed  CAS  Google Scholar 

  8. Mayne Pharma (Canada) Inc., Doxorubicin Product Monograph. Date of revision: 2002

  9. Nielsen D, Jensen JB, Dombernowsky P et al (1990) Epirubicin cardiotoxicity: a study of 135 patients with advanced breast cancer. J Clin Oncol 8:1806–1810

    PubMed  CAS  Google Scholar 

  10. Ryberg M, Nielsen D, Skovsgaard T et al (1998) Epirubicin cardiotoxicity: an analysis of 469 patients with metastatic breast cancer. J Clin Oncol 16:3502–3508

    PubMed  CAS  Google Scholar 

  11. Gluck S (2005) Adjuvant chemotherapy for early breast cancer: optimal use of epirubicin. Oncologist 10:780–791

    Article  PubMed  CAS  Google Scholar 

  12. Minotti G, Licata S, Saponiero A et al (2000) Anthracycline metabolism and toxicity in human myocardium: comparisons between doxorubicin, epirubicin, and a novel disaccharide analogue with a reduced level of formation and [4FE-4S] reactivity of its secondary alcohol metabolite. Chem Res Toxicol 13:1336–1341

    Article  PubMed  CAS  Google Scholar 

  13. Hasinoff BB, Schanbl KL, Marusak RA et al (2003) Dexrazoxane (ICRF-187) protects cardiac myocytes against doxorubicin by preventing damage to mitochondria. Cardiovasc Toxicol 3:89–99

    Article  PubMed  CAS  Google Scholar 

  14. Kaiserova H, den Hartoq GJ, Simunek T et al (2006) Iron is not involved in oxidative stress-mediated cytotoxicity of doxorubicin and bleomycin. Br J Pharmacol 149:920–930

    Article  PubMed  CAS  Google Scholar 

  15. Gabizon AA (2001) Pegylated liposomal doxorubicin: metamorphosis of an old drug into a new form of chemotherapy. Cancer Investigation 19:424–436

    Article  PubMed  CAS  Google Scholar 

  16. Batist G, Ramakrishnan G, Rao C et al (2001) Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 19:1444–1454

    PubMed  CAS  Google Scholar 

  17. Harris L, Batist G, Belt R et al (2002) Liposome-encapsulated doxorubicin compared with conventional doxorubicin in a randomized multicenter trial as first-line therapy of metastatic breast carcinoma. Cancer 94:25–36

    Article  PubMed  CAS  Google Scholar 

  18. Chan S, Davidson N, Juozaityte E et al (1999) Phase III study of liposome-encapsulated doxorubicin (TLC D-99) and Cyclophosphamide (CPA) vs Epirubicin and CPA in first-line treatment of metastatic breast cancer (MBC). Eur J Cancer 35:315–321.

    Article  Google Scholar 

  19. Theodoulou M, Hudis C (2004) Cardiac profiles of liposomal anthracyclines: greater cardiac safety versus conventional doxorubicin? Cancer 100:2052–2063

    Article  PubMed  CAS  Google Scholar 

  20. Alberts DS, Franco M, Carmichael J et al (2004) Efficacy and safety of liposomal anthracycline in phase I/II clinical trials. Semin Oncol 32[Suppl 13]:53–90

    Article  CAS  Google Scholar 

  21. Safra T, Muggia F, Jeffers S et al (2000) Pegylated liposomal doxorubicin (Doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 11:1029–1033

    Article  PubMed  CAS  Google Scholar 

  22. O’Brien ME, Wigler N, Inbar M et al (2004) Reduced cardiotoxicity and comparable efficacy in a phase III trial of Pegylated Liposomal Doxorubicin HC1 (Caelyx/Doxil) versus conventional Doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 15:440–449

    Article  PubMed  CAS  Google Scholar 

  23. Andreopoulou E, Gaiotti D, Kim E et al (2007) Pegylated liposomal doxorubicin HCL (PLD; Caelyx/Doxil): experience with long-term maintenance in responding patients with recurrent epithelial ovarian cancer. Ann Oncol 18:716–721

    Article  PubMed  CAS  Google Scholar 

  24. Chia S, Clemons M, Martin LA et al (2006) Pegylated liposomal doxorubicin and trastuzumab in HER-2 overexpressing metastatic breast cancer: a multicenter phase II trial. J Clin Oncol 24:2773–2778

    Article  PubMed  CAS  Google Scholar 

  25. Grasselli G, Vigano L, Capri G et al (2001) Clinical and pharmacologic study of the Epirubicin and Paclitaxel combination in women with metastatic breast cancer. J Clin Oncol 19:2222–2231

    PubMed  CAS  Google Scholar 

  26. Schrader C, Keussen C, Bewig B et al (2005) Symptoms and signs of an acute myocardial ischemia caused by chemotherapy with Paclitaxel (Taxol) in a patient with metastatic ovarian carcinoma. Eur J Med Res 10:498–501

    PubMed  Google Scholar 

  27. Yamac D, Elmas C, Ozogul C et al (2006) Ultrastructural damage in vascular endothelium in rats treated with Paclitaxel and Doxorubicin. Ultrastruct Pathol 30:103–110

    Article  PubMed  Google Scholar 

  28. Salvatorelli E, Menna P, Cascegna S et al (2006) Paclitaxel and Docetaxel stimulation of doxorubicinol formation in the human heart: implications for cardiotoxicity of Doxorubicin-Taxane chemotherapies. J Pharmacol Exp Ther 318:424–433

    Article  PubMed  CAS  Google Scholar 

  29. Schuller J, Czejka M, Kletzl H et al (1998) Doxorubicin (DOX) and Taxotere (TXT). A pharmacokinetic (PK) study of the combination in advanced breast cancer. Proceedings of the American Society of Clinical Oncology Annual Meeting 1998, Abstract #790

  30. Gradishar WJ, Tjulandin S, Davidson N et al (2005) Phase III trial of nanoparticle albuminbound Paclitaxel compared with polyethylated castor oil-based Paclitaxel in women with breast cancer. J Clin Oncol 23:7794–7803

    Article  PubMed  CAS  Google Scholar 

  31. Bertolini, M. Flumano J, Fusco O et al (2001) Acute cardiotoxicity during capecitabine treatment: a case report. Tumori 87:200–206

    PubMed  CAS  Google Scholar 

  32. Frickhofen N, Beck NJ, Jung B et al (2002) Capecitabine can induce acute coronary syndrome similar to 5-fluorouracil. Ann Oncol 5:797–801

    Article  Google Scholar 

  33. Arbea L, Coma Canella I, Martinez-Monge R et al (2007) A case of capecitabine-induced coronary microspasm in a patient with rectal cancer. World J Gastroenterol 13:2135–2137

    PubMed  Google Scholar 

  34. Schober C, Papageorgiou E, Harstrick A et al (1993) Cardiotoxicity of 5-fluorouracil in combination with folinic acid in patients with gastrointestinal cancer. Cancer 72:2242–2247

    Article  PubMed  CAS  Google Scholar 

  35. Jensen SA, Sorensen JB (2006) Risk factors and prevention of cardiotoxicity induced by 5-fluorouracil or capecitabine. Cancer Chemother Pharmacol 58:487–493

    Article  PubMed  CAS  Google Scholar 

  36. Ferrari D, Carbone C, Codeca C et al (2006) Gemcitabine and atrial fibrillation: a rare manifestation of chemotherapy toxicity. Anticancer Drugs 17:359–361

    Article  PubMed  CAS  Google Scholar 

  37. Santini D, Tonini G, Abbate A et al (2000) Gemcitabine-induced atrial fibrillation: a hitherto unreported manifestation of drug toxicity. Ann Oncol 11:479–481

    Article  PubMed  CAS  Google Scholar 

  38. Ng M, Cunningham D, Norman AR (2005) The frequency and pattern of cardiotoxicity observed with Capecitabine used in conjunction with Oxaliplatin in patients treated for advanced colorectal cancer (CRC). Eur J Cancer 41:1542–1546

    Article  PubMed  CAS  Google Scholar 

  39. De Forni M, Malet-Martino MC, Jaillais P et al (1992) Cardiotoxicity of high-dose continuous infusion Fluorouracil: a prospective clinical study. J Clin Oncol 10:1795–1801

    PubMed  Google Scholar 

  40. Smith IE, Dowsett M (2003) Aromatase inhibitors in breast cancer. N Engl J Med 348:2431–2442

    Article  PubMed  CAS  Google Scholar 

  41. BIG 1-98 Collaborative group (2005) A comparison of letrozole and tamoxifen in postmenopausal women with early breast cancer. N Engl J Med 355:2747–2757

    Article  Google Scholar 

  42. Coates AS, Keshaviah A, Thurlimann B et al (2007) Five years of Letrozole compared with Tamoxifen as initial adjuvant therapy for post-menopausal women with endocrine-responsive early breast cancer: update of study BIG 1-98. J Clin Oncol 25:486–492

    Article  PubMed  CAS  Google Scholar 

  43. Howell A, Cuzick J, Baum M et al [ATAC trialists’ group] (2005) Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet 365:60–62

    Article  PubMed  CAS  Google Scholar 

  44. Coombes RC, Kilburn LS, Snowdon CF et al (Intergroup Exemestane Study) (2007) Survival and safety of Exemestane versus Tamoxifen after 2–3 years’ Tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet 369:559–570

    Article  PubMed  CAS  Google Scholar 

  45. Jakesz R, Jonat W, Gnant M et al (2005) Switching of postmenopausal women with endocrine-responsive early breast cancer to Anastrozole after 2 years’ adjuvant Tamoxifen: combined results of ABCSG trial 8 and ARNO 95 trial. Lancet 366: 455–462

    Article  PubMed  CAS  Google Scholar 

  46. Boccardo F, Rubagotti A, Guglielmini P et al (2006) Switching to Anastrozole versus continued Tamoxifen treatment of early breast cancer. Updated results of the Italian Tamoxifen Anastrozole (ITA) trial. Ann Oncol 17[Suppl 7]:10–14

    Google Scholar 

  47. Goss PE, Ingle JN, Martino S et al (2005) Randomized trial of Letrozole following Tamoxifen as extended adjuvant therapy in receptor-positive breast cancer: updated findings from NCIC CTG MA.17. J Natl Cancer Inst 97:1262–1271

    Article  PubMed  CAS  Google Scholar 

  48. Coli S, Magnoni M, Melisurgo G et al (2007) Myocardial infarction complicating the initial phase of an ovarian stimulation protocol. Int J Cardiol 115:56–57

    Article  Google Scholar 

  49. Keating LN, O’Malley AJ, Smith MR (2006) Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol 256:4448–4456

    Article  CAS  Google Scholar 

  50. Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  51. Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to Gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  52. Pao W, Miller V, Zakowsky M et al (2004) EGF receptor gene mutations are common in lung cancers form never smokers and are associated with sensitivity of tumors to Gefitinib and Erlotinib. Proc Natl Acad U S A 101:13306–13311

    Article  CAS  Google Scholar 

  53. Shepherd FA, Rodrigues Pereira J, Ciuleanu T et al (2005) Erlotinib in previously treated non-small cell lung cancer. N Engl J Med 353:123–132

    Article  PubMed  CAS  Google Scholar 

  54. Thatcher N, Chang A, Parikh P et al (2005) Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small cell lung cancer: results from a randomized, placebo controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet 366:1527–1537

    Article  PubMed  CAS  Google Scholar 

  55. Demetri GD, von Mehren M, Blanke CD et al (2002) Efficacy and safety of Imatinib Mesylate in advanced gastrointestinal stromal tumors. N Engl Med 347:472–480

    Article  CAS  Google Scholar 

  56. Francois H, Placier S, Flamant M et al (2004) Prevention of renal vascular and glomerular fibrosis by epidermal growth factor receptor inhibition. FASEB J 10:1–19

    Google Scholar 

  57. Cunningham D, Humblet Y, Siena S et al (2004) Cetuximab monotherapy and Cetuximab plus Irinotecan in Irinotecan-refractory metastatic colorectal cancer. N Engl J Med 35:337–345

    Article  Google Scholar 

  58. Bonner JA, Giralt J, Harari PM et al (2004) Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of the head and neck: a phase III study of high dose radiation therapy with or without Cetuximab. J Clin Oncol 22:5507

    Google Scholar 

  59. Saltz LB, Meropol NJ, Loehrer PJ et al (2004) Phase II trial of Cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22:1201–1208

    Article  PubMed  CAS  Google Scholar 

  60. Huang S, Li J, Harari PM (2002) Molecular inhibition of angiogenesis and metastatic potential in human squamous cell carcinomas after Epidermal growth factor receptor blockade. Mol Cancer Ther 1:507–514

    PubMed  CAS  Google Scholar 

  61. Perrotte P, Matsumoto T, Inoue K et al (1999) Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clin Cancer Res 5:257–264

    PubMed  CAS  Google Scholar 

  62. Pegram M, Slamon D (2000) Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol 27:13–19

    PubMed  CAS  Google Scholar 

  63. Baselga J (2001) Herceptin alone or in combination with chemotherapy in the treatment of Her-2 positive metastatic breast cancer. Pivotal trials. Oncology 61:14–21

    Article  PubMed  CAS  Google Scholar 

  64. Ewer M, Vooletich M, Duran J et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 1: 7820–7826

    Article  CAS  Google Scholar 

  65. Piccard-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Herceptin Adjuvant (HERA) trial Study Team. N Engl J Med 353:1659–1672

    Article  Google Scholar 

  66. Keefe D (2002) Trastuzumab-associated cardiotoxicity. Cancer 95:1592–1600

    Article  PubMed  CAS  Google Scholar 

  67. Salmon DJ, Leyland-Jones B, Shak S et al (2001) Use of chemotherapy plus monoclonal antibody against HER-2 for metastatic breast cancer that overexpresses HER-2. N Engl J Med 344:783–792

    Article  Google Scholar 

  68. Ng R, Green MD (2007) Managing cardiotoxicity in anthracycline-treated breast cancers. Expert Opin Drug Saf 6:315–321

    Article  PubMed  CAS  Google Scholar 

  69. Suter TM, Cook-Bruns N, Barton C (2004) Cardiotoxicity associated with trastuzumab (Herceptin) therapy in the treatment of metastatic breast cancer. Breast 13:173–183

    Article  PubMed  CAS  Google Scholar 

  70. Crone SA, Zhao YY, Fan L et al (2002) ErbB2 is essential in the prevention of dilated cardiomyopathy. Nat Med 8:263–266

    Article  CAS  Google Scholar 

  71. Ozcelik C, Erdmann B, Pilz B et al (2002) Conditional mutation of the ErbB2 (HER2) receptor in cardiomyocytes leads to dilated cardiomyopathy. Proc Natl Acad Sci U S A 99:8880–8885

    Article  PubMed  CAS  Google Scholar 

  72. Grazette L, Boecker W, Matsui T et al (2004) The inhibition of ErbB2 causes mitochondrial dysfunction in cardiomyocytes. Implications for Herceptin-induced cardiomyopathy. J Am Coll Cardiol 11:2231–2238

    Article  CAS  Google Scholar 

  73. Ewer MS, Vooletich MT, Durand JB et al (2005) Reversibility of trastuzumab-related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 31:7820–7826

    Article  CAS  Google Scholar 

  74. Burris I (2004) Dual kinase inhibition in the treatment of breast cancer: initial experience with the EGFR/ErbB-2 inhibitor lapatinib. Oncologist 9:10–15

    Article  PubMed  CAS  Google Scholar 

  75. Blackwell KL, Kaplan EH, Franco SX et al (2004) A phase II, open-label, multicenter study of Lapatinib (GW572016) in patients with metastatic breast cancer that has progressed on Trastuzumab containing regimen. Ann Oncol 15:27–31

    Article  Google Scholar 

  76. Geyer C, Forster J, Lindquist D et al (2006) Lapatinib plus Capecitabine for Her-2 positive advanced breast cancer. N Engl J Med 28:2733–2743

    Article  Google Scholar 

  77. O’Brien SG, Guilhot F, Larson RA et al (2002) Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic phase chronic myeloid leukemia. N Engl J Med 348:994–1004

    Article  Google Scholar 

  78. Park YH, Park HJ, Kim BS et al (2006) BNP as a marker of the heart failure in the treatment of imatinib mesylate. Cancer Lett 243:16–22

    Article  PubMed  CAS  Google Scholar 

  79. Kerkela R, Grazzette L, Yacobo R et al (2006) Cardiotoxicity of the cancer therapic agent Imatinib Mesylate. Nature Med 8:908–916

    Google Scholar 

  80. Sun X (2000) Activation of the cytoplasmatic c-Abl tyrosine kinase by reactive oxygen species. J Biol Chem 275:17237–17240

    Article  PubMed  CAS  Google Scholar 

  81. Verweij J, Casali PG, Kotasek D et al (2007) Imatinib does not induce cardiac left ventricular failure in gastrointestinal stromal tumours patients: analysis of EORTC-ISG-AGITG study 62005. Eur J Cancer 43:974–978

    Article  PubMed  CAS  Google Scholar 

  82. Mann D (2006) Targeted cancer therapeutics: the heartbreak of success. Nature Med 8:881–882

    Google Scholar 

  83. Shah NP, Tran C, Lee FY (2004) Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 305:399–401

    Article  PubMed  CAS  Google Scholar 

  84. Sawyers CL, Shah NP, Kantarjian HM (2005) A phase I study of BMS-354825 in patients with Imatinib-resistant and intolerant accelerated and blast phase chronic myeloid leukemia: from CA 180002. J Clin Oncol 23:256–260

    Google Scholar 

  85. Talpaz M, Shah N, Kantarjan H et al (2006) Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med 24:2531–2541

    Article  Google Scholar 

  86. Fieldler W, Serve H, Dohner H et al (2005) A phase 1 study of SU 11248 in the treatment of patients with refractory or resistant acute myeloid leukemia (AML) or not amenable to conventional therapy for the disease. Blood 3:986–993

    Google Scholar 

  87. Mozter R, Hutson T, Tomczak P et al (2007) Sunitinib versus interferon alfa in metastatic renal cell carcinoma. N Engl J Med 2:115–124

    Google Scholar 

  88. Mozter R, Rini B, Bukowski R et al (2006) Sunitinib in patients with metastatic renal cell carcinoma. JAMA 21:2516–2524

    Google Scholar 

  89. Strumberg D, Richly H, Higer RA (2005) Phase I clinical and pharmacokinetic study of the novel raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23:965–971

    Article  PubMed  CAS  Google Scholar 

  90. Escudier B, Eisen T, Stadler W et al (2007) Sorafenib in advanced clear-cell renal cell carcinoma. N Engl J Med 356:125–134

    Article  PubMed  CAS  Google Scholar 

  91. Gordon M, Margolin K, Talpaz M et al (2001) Phase I safety and pharmacokinetic study of recombinant Human Anti-vascular endothelial growth factor in patients with advanced cancer. J Clin Oncol 19:843–850

    PubMed  CAS  Google Scholar 

  92. Kabbinavar F, Hurwitz HI, Fehrenbacher L et al (2003) Phase II randomized trial comparing Bevacizumab plus Fluoracil (FU)/Leucovorin (LV) with FU/LV alone in patients with metastatic colorectal cancer. J Clin Oncol 21:60–65

    Article  PubMed  CAS  Google Scholar 

  93. Hurwitz H, Ferenbacher L, Novotny W et al (2004) Bevacizumab plus Irinotecan, Fluoracil and Leucovorin for metastatic colorectal cancer. N Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  94. Giantonio BJ, Catalano PJ, Meropol NJ et al (2005) High dose Bevacizumab improves survival when combined with FOLFOX-4 in previously treated advanced colorectal cancer: Results from the Eastern Cooperative Oncology Group (ECOG) study E3200. Presented at the American Society of Clinical Oncology Annual Meeting, 13–17 May 2005, Orlando, FL, Abstract 3508

  95. Hochster SH, Hart LL, Ramanathan RK et al (2006) Safety and efficacy of oxaliplatin/fluoropyrimidine regimens with or without Bevacizumab as first line treatment of metastatic colorectal cancer: final analysis of the TREE-Study. Presented at the American Society of Clinical Oncology Annual Meeting, 2–6 June 2006, Atlanta, GA, Abstract 3510

  96. Sandler A, Gray R, Perry M et al (2006) Paclitaxel-carboplatin alone or with bevacizumab for non-small cell lung cancer. N Engl J Med 355:2542–2550

    Article  PubMed  CAS  Google Scholar 

  97. D’Adamo DR, Anderson SE, Albritton K et al (2005) Phase II study of doxorubicin and bevacizumab for patients with metastatic soft-tissue sarcomas. J Clin Oncol 23:7135–7142

    Article  PubMed  CAS  Google Scholar 

  98. Eskens F, Verweij J (2006) The clinical toxicity profile of vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) targeting angiogenesis inhibitors; a review. Eur J Cancer 42:3127–3139

    Article  PubMed  CAS  Google Scholar 

  99. Kuenen BC, Levi M, Meijers JC et al (2003) Potential role of platelets in endothelial damage observed during treatment with cisplatin, gemcitabine and the angiogenesis inhibitor SU 5416. J Clin Oncol 21:2192–2198

    Article  PubMed  CAS  Google Scholar 

  100. Hambleton J, Novotny W, Hurwitz H et al (2004) Bevacizumab does not increase bleeding in patients with metastatic colorectal cancer receiving concurrent anticoagulation. J Clin Oncol [Suppl]:abstract 3528

  101. Herrmann J, Ciechanover A, Lerman LO et al (2004) The ubiquitin-proteasome system in cardiovascular diseases — a hypothesis extended. Cardiovasc Res 61:11–21

    Article  PubMed  CAS  Google Scholar 

  102. Hiseshima T, Mitsiades C, Akiyama M et al (2003) Molecular mechanisms mediating antimyeloma activity of proteasome inhibitor PS-341. Blood 101:1530–1534

    Article  CAS  Google Scholar 

  103. Richardson PG, Sonneveld P, Schuster MW et al (2005) Bortezomib or high-dose dexamethasone for relapsed Multiple Myeloma. N Engl J Med 352:2487–2498

    Article  PubMed  CAS  Google Scholar 

  104. Voortman J, Giaccone G (2006) Severe reversible cardiac failure after Bortezomib treatment combined with chemotherapy in a non-small cell lung cancer patient: a case report. BMC Cancer 11:129

    Article  Google Scholar 

  105. Lenihan D, Alencar A, Yang D et al (2004) Cardiac toxicity of Alemtuzumab in patients with mycosis fungoides/Sezary Syndrome. Blood 104:655–658

    Article  PubMed  CAS  Google Scholar 

  106. Mavromatis B, Cheson BD (2003) Monoclonal antibody therapy of chronic lymphocytic leukemia. J Clin Oncol 21:1874–1881

    Article  PubMed  CAS  Google Scholar 

  107. Osterborg A (2005) No cardiac toxicity associated with Alemtuzumab therapy for mycosis fungoides/Sezary syndrome. Blood 10:4148–4149

    Google Scholar 

  108. Wing MG, Moreau T, Greenwood J et al (1996) Mechanism of first dose cytokine-release syndrome by CAMPATH-1H: involvement of CD16 (FcãRIII) and CD11a/CD11a/CD18 (LFA-1) or NK cells. J Clin Invest 98:2819–2826

    Article  PubMed  CAS  Google Scholar 

  109. Servitje O, Limon A, Blanco A et al (1999) Cardiac involvement and molecular staging in a fatal case of mycosis fungoides. Br J Dermatol 141:531–535

    Article  PubMed  CAS  Google Scholar 

  110. Ewert M, Vouletich M, Durand J et al (2005) Reversibility of trastuzumab related cardiotoxicity. New insights based on clinical course and response to medical treatment. J Clin Oncol 31:7820–7826

    Article  CAS  Google Scholar 

  111. Yeh ET, Tong AT, Lenihan DJ et al (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis and management. Circulation 109:3122–3131

    Article  PubMed  Google Scholar 

  112. Sugal PK, Hiskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Sereno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sereno, M., Brunello, A., Chiappori, A. et al. Cardiac toxicity: old and new issues in anti-cancer drugs. Clin Transl Oncol 10, 35–46 (2008). https://doi.org/10.1007/s12094-008-0150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-008-0150-8

Keywords

Navigation