Skip to main content
Log in

A complementary construction using mutually unbiased bases

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

We propose a construction for complementary sets of arrays that exploits a set of mutually-unbiased bases (a MUB). In particular we present, in detail, the construction for complementary pairs that is seeded by a MUB of dimension 2, where we enumerate the arrays and the corresponding set of complementary sequences obtained from the arrays by projection. We also sketch an algorithm to uniquely generate these sequences. The pairwise squared inner-product of members of the sequence set is shown to be \(\frac {1}{2}\). Moreover, a subset of the set can be viewed as a codebook that asymptotically achieves \(\sqrt {\frac {3}{2}}\) times the Welch bound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Up to trivial symmetries and, for a fixed δ, there may be more than one choice of ℳ δ .

  2. Comparing \(F_{k}(z)F_{k}^{*}\left (z^{-1}\right )\) with F z − 1 F(z), we see that, whilst z − 1 is on the right for the former it is on the left for the latter. This is simply because F is a S × 1 vector - there is no deeper meaning.

  3. More accurately, we should write f k (π(x)) to indicate one of 6 possible permutations but, to reduce notation, we make such a mapping implicit in this paper.

References

  1. Barthelemy, J.P: An asymptotic equivalent for the number of total preorders on a finite set. Discret. Math. 29(3), 311–313 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bian, X., Yu, N.Y: Partial fourier codebooks associated with multiplied golay complementary sequences for compressed sensing. Sequences and Their Applications - SETA 2012 Lecture Notes in Computer Science, vol. 7280, pp. 257–268, 2012

  3. Bjørstad, T.E., Parker, M.G.: Equivalence between certain complementary pairs of types I and III. In: Preneel, B., Dodunekov, S., Rijmen, V., Nikova, S. (eds.) Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes. Invited talk at NATO Science for Peace and Security Series - D: Information and Communication Security, vol. 23. http://www.ii.uib.no/matthew/CompEquivCorrected. pdf (2009)

  4. Budǐsin, S.Z.: New complementary pairs of sequences. Electron. Lett. 26, 881–883 (1990)

    Article  Google Scholar 

  5. Budǐsin, S.Z., Spasojević, P.: Filter bank representation of complementary sequence pairs. In: 15th Annual Allerton Conference. Allerton House, UIUC, Illinois (2012)

  6. Budǐsin, S.Z., Spasojević, P.: Paraunitary generation/correlation of QAM complementary sequence pairs. Crypt. Commun. 5(3) (2013)

  7. Cloitre, B.: The On-Line Encyclopedia of Integer Sequences, A050351 (A094416), asymptotic formula, http://oeis.org/ (2013)

  8. Davis, J.A., Jedwab, J.: Peak-to-mean power control for OFDM, Golay complementary sequences, and Reed-Muller codes. IEEE Trans. Inform. Theory 45(11), 2397–2417 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Durt, T., Englert, B.-G., Bengtsson, I., Zyczkowski, K.: On mutually unbiased bases. Int. J. Quantum Inf. 8, 535–640 (2010). arXiv:1004.3348 [quant-ph]

    Article  MATH  Google Scholar 

  10. Fiedler, F., Jedwab, J., Parker, M.G.: A multi-dimensional approach to the construction and enumeration of Golay complementary sequences. J. Comb. Theory (Series A) 115, 753–776 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fiedler, F., Jedwab, J., Parker, M.G.: A framework for the construction of Golay sequences. IEEE Trans. Inform. Theory 54(7), 3113–3129 (2008)

    Article  MathSciNet  Google Scholar 

  12. Golay, M.J.E.: Complementary series. IEEE Trans. Inf. Theory IT-7(2), 82–87 (1961)

    Article  MathSciNet  Google Scholar 

  13. Hein, M., Dur, W., Eisert, J., Raussendorf, R., Van den Nest, M., Briegel, H.-J.: Entanglement in graph states and its applications. In: Zoller, P., Casati, G., Shepelyansky, D., Benenti, G. (eds.) International School of Physics Enrico Fermi (Varenna, Italy), Quantum Computers, Algorithms and Chaos, vol. 162. arXiv:0602096 [quant-ph] (2006)

  14. Ivanović, I.D.: Geometrical description of quantal state determination. J. Phys. A 14(12), 3241–3245 (1981)

    Article  MathSciNet  Google Scholar 

  15. Jedwab, J., Parker, M.G.: Golay complementary array pairs. Des. Codes Crypt. 44, 209–216 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kschischang, F.R., Frey, B.J., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inform. Theory 47(2) (2001)

  17. Matsufuji, S., Shigemitsu, R., Tanada, Y., Kuroyanagi, N.: Construction of complementary arrays. In: Proceedings of Sympotic’04, pp. 78–81 (2004)

  18. The On-Line Encyclopedia of Integer Sequences. http://oeis.org/ (2013)

  19. Parker, M.G., Tellambura, C.: Golay-Davis-Jedwab complementary sequences and rudin-shapiro constructions. In:International Symposium in Information Theory, p. 302. Sorrento (2000)

  20. Parker, M.G., Tellambura, C.: A construction for binary sequence sets with low peak-to-average power ratio. Reports in Informatics. Report No 242, ISSN 0333–3590. University of Bergen. http://www.ii.uib.no/matthew/ConstructReport.pdf (2003)

  21. Parker, M.G., Riera, C.: Generalised complementary arrays. Lecture Notes in Computer Science, LNCS, vol. 7089. Springer (2011)

  22. Paterson, K.G.: Generalized Reed-Muller codes and power control in OFDM modulation. IEEE Trans. Inform. Theory 46, 104–120 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Riera, C., Jacob, S., Parker, M.G.: From Graph states to two-graph states. Des. Codes Crypt 48, 2 (2008). arXiv:0801.4754 [quant-ph]

    Article  MathSciNet  Google Scholar 

  24. Ruskai, M.B.: Some connections between frames, mutually unbiased bases, and POVM’s in quantum information theory. Acta Appl. Math. 108(3), 709–719 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Sarwate, D.: Meeting the Welch bound with equality. In: Proceedings of SETA’98 Sequences Their Application, pp. 79–102. Springer, London (1999)

    Chapter  Google Scholar 

  26. Schmidt, K.-U.: On cosets of the generalized first-order Reed-Muller code with low PMEPR. IEEE Trans. Inf. Theory 52(7), 3220–3232 (2006)

    Article  Google Scholar 

  27. Schmidt, K.-U.: Complementary sets, generalized Reed-Muller codes, and power control for OFDM. IEEE Trans. Inf. Theory 53(2), 808–814 (2007)

    Article  Google Scholar 

  28. Schwinger, J.: Unitary Operator Bases. Harvard University (1960)

  29. Shapiro, H.S.: Extremal Problems for Polynomials and Power Series. Master’s thesis, Mass. Inst. of Technology (1951)

  30. Suehiro, N., Hatori, M.: N-shift cross-orthogonal sequences. IEEE Trans. Inform. Theory IT-34(1), 143–146 (1988)

    Article  MathSciNet  Google Scholar 

  31. Wang, Z., Parker, M.G., Gong, G., Wu, G.: On the PMEPR of binary Golay sequences of length 2n. submitted (June 2013)

  32. Welch, L.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform. Theory 20(3), 397–399 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  33. Wilf, H.S.: Generating Functionology, 2nd edn. Academic, NY (1994)

    Google Scholar 

Download references

Acknowledgments

We wish to thank the reviewers for their helpful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Geoffrey Parker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, G., Parker, M.G. A complementary construction using mutually unbiased bases. Cryptogr. Commun. 6, 3–25 (2014). https://doi.org/10.1007/s12095-013-0095-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-013-0095-9

Keywords

Mathematics Subject Classifications

Navigation