Skip to main content
Log in

Linear codes with one-dimensional hull associated with Gaussian sums

  • Original Research
  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

The hull of a linear code over finite fields, the intersection of the code and its dual, has been of interest and extensively studied due to its wide applications. For example, it plays a vital role in determining the complexity of algorithms for checking permutation equivalence of two linear codes and for computing the automorphism group of a linear code. People are interested in pursuing linear codes with small hulls since, for such codes, the aforementioned algorithms are very efficient. In this field, Carlet, Mesnager, Tang and Qi gave a systematic characterization of LCD codes, i.e, linear codes with null hull. In 2019, Carlet, Li and Mesnager presented some constructions of linear codes with small hulls. In the same year, Li and Zeng derived some constructions of linear codes with one-dimensional hull by using some specific Gaussian sums. In this paper, we use general Gaussian sums to construct linear codes with one-dimensional hull by utilizing number fields, which generalizes some results of Li and Zeng (IEEE Trans. Inf. Theory 65(3), 1668–1676, 2019) and also of those presented by Carlet et al. (Des. Codes Cryptogr. 87(12), 3063–3075, 2019). We give sufficient conditions to obtain such codes. Notably, some codes we obtained are optimal or almost optimal according to the Database. This is the first attempt on constructing linear codes by general Gaussian sums which have one-dimensional hull and are optimal. Moreover, we also develop a bound of on the minimum distances of linear codes we constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assmus, E. Jr., Key, J.: Affine and projective planes. Discret. Math. 83, 161–187 (1990)

    Article  MathSciNet  Google Scholar 

  2. Bosma, W., Cannon, J., Fieker, C., Steel, A.: Handbook of Magma functions Edition 2.22 5669 pages. http://magma.maths.usyd.edu.au/magma/ (2016)

  3. Brouwer, A., Haemers, W.: Spectra of Graphs. Springer, New York (2012)

    Book  Google Scholar 

  4. Chen, B., Liu, H.: New constructions of MDS codes with complementary duals. IEEE Trans. Inf. Theory 64(8), 5776–5782 (2018)

    Article  MathSciNet  Google Scholar 

  5. Carlet, C., Li, C., Mesnager, S.: Linear codes with small hulls in semi-primitive case. Des. Codes Cryptogr. 87(12), 3063–3075 (2019)

    Article  MathSciNet  Google Scholar 

  6. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and hermitian LCD MDS codes. Des. Codes Cryptogr. 86(11), 2605–2618 (2018)

    Article  MathSciNet  Google Scholar 

  7. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: On σ-LCD codes. IEEE Trans. Inf. Theory 65(3), 1694–1704 (2019)

    Article  MathSciNet  Google Scholar 

  8. Carlet, C., Mesnager, S., Tang, C., Qi, Y., Pellikaan, R.: Linear codes over \(\mathbb {F}_{q}\) are equivalent to LCD codes for q > 3. IEEE Trans. Inf. Theory 64(4), 3010–3017 (2018)

    Article  Google Scholar 

  9. Dougherty, S. T., Kim, J., Özkaya, B., Sok, L., Solé, P.: The combinatorics of LCD codes: linear programming bound and orthogonal matrices. Int. J. Inf. Coding Theory 4(2-3), 116–128 (2017)

    Article  MathSciNet  Google Scholar 

  10. Grassl, M.: Bounds on the minimum distance of linear codes and quantum codes, http://www.codetables.de. Accessed 2 Jan 2019 (2019)

  11. Güneri, C., Özkaya, B., Solé, P.: Quasi-cyclic complementary dual codes. Finite Fields Their Appl. 42, 67–80 (2016)

    Article  MathSciNet  Google Scholar 

  12. Ireland, K., Rosen, M.: A Classical Introduction to Modern Number Theory GTM, 2nd edn., vol. 84. Springer, New York (1990)

    Book  Google Scholar 

  13. Leon, J.: An algorithm for computing the automorphism group of a Hadamard matrix. J. Comb. Theory 27(3), 289–306 (1979)

    Article  MathSciNet  Google Scholar 

  14. Leon, J.: Permutation group algorithms based on partition i: theory and algorithms. J. Symb. Comput. 12(4-5), 533–583 (1982)

    Article  MathSciNet  Google Scholar 

  15. Li, C., Ding, C., Li, S.: LCD Cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356 (2017)

    Article  MathSciNet  Google Scholar 

  16. Liu, X., Fan, Y., Liu, H.: Galois LCD codes over finite fields. Finite Fields Their Appl. 49, 227–242 (2018)

    Article  MathSciNet  Google Scholar 

  17. Liu, X., Liu, H.: LCD Codes over finite chain rings. Finite Fields Their Appl. 34, 1–19 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lidl, R., Niederreiter, H., Cohn, P.M.: Finite Fields. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  19. Li, C., Zeng, P.: Constructions of linear codes with one-dimensional hull. IEEE Trans. Inf. Theory 65(3), 1668–1676 (2019)

    Article  MathSciNet  Google Scholar 

  20. Massey, J.: Linear codes with complementary duals. Discrete Math. 106-107, 337–342 (1992)

    Article  MathSciNet  Google Scholar 

  21. Mesnager, S., Tang, C., Qi, Y.: Complementary dual algebraic geometry codes. IEEE Trans. Inf. Theory 64(4), 2390–2397 (2018)

    Article  MathSciNet  Google Scholar 

  22. Sangwisut, E., Jitman, S., Ling, S., Udomkavanich, P.: Hulls of cyclic and negacyclic codes over finite fields. Finite Fields Appl. 33, 232–257 (2015)

    Article  MathSciNet  Google Scholar 

  23. Sendrier, N.: Finding the permutation between equivalent codes: the support splitting algorithm. IEEE Trans. Inf. Theory 46(4), 1193–1203 (2000)

    Article  MathSciNet  Google Scholar 

  24. Sendrier, N.: On the dimension of the hull. SIAM J. Appl. Math. 10, 282–293 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Sendrier, N., Skersys, G.: On the computation of the automorphism group of a linear code. In: Proceedings of IEEE ISIT 2001, Washington, DC, 13 (2001)

  26. Shi, M., Guan, Y., Solé, P.: Two new families of two-weight codes. IEEE Trans. Inf. Theory 63(10), 6240–6246 (2017)

    Article  MathSciNet  Google Scholar 

  27. Shi, M., Huang, D., Sok, L., Solé, P., Double circulant, L C D: Codes over \(\mathbb {Z}_{4}\). Finite Fields Their Appl. 58, 133–144 (2019)

    Article  MathSciNet  Google Scholar 

  28. Shi, M., Zhu, H., Solé, P.: Optimal three-weight cubic codes. Appl. Comput. Math. 17(2), 175–184 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Skersys, G.: The average dimension of the hull of cyclic codes. Discrete Appl. Math. 128, 275–292 (2003)

    Article  MathSciNet  Google Scholar 

  30. Sok, L., Shi, M.J., Solé, P.: Construction of optimal LCD codes over large finite fields. Finite Fields Their Appl. 50, 138–153 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors deeply thank the Assoc. Edit. and the anonymous reviewers for their valuable comments which have highly improved the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiwang Cao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is supported by the National Natural Science Foundation of China under Grant 11771007 and Grant 61572027.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Cao, X. & Mesnager, S. Linear codes with one-dimensional hull associated with Gaussian sums. Cryptogr. Commun. 13, 225–243 (2021). https://doi.org/10.1007/s12095-020-00462-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-020-00462-y

Keywords

Mathematics Subject Classification (2010)

Navigation