Skip to main content

Advertisement

Log in

Mutation and Transcriptional Profiling of Formalin-Fixed Paraffin Embedded Specimens as Companion Methods to Immunohistochemistry for Determining Therapeutic Targets in Oropharyngeal Squamous Cell Carcinoma (OPSCC): A Pilot of Proof of Principle

  • Original Paper
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

The role of molecular methods in the diagnosis of head and neck cancer is rapidly evolving and holds great potential for improving outcomes for all patients who suffer from this diverse group of malignancies . However, there is considerable debate as to the best clinical approaches, particularly for Next Generation Sequencing (NGS). The choices of NGS methods such as whole exome, whole genome, whole transcriptomes (RNA-Seq) or multiple gene resequencing panels, each have strengths and weakness based on data quality, the size of the data, the turnaround time for data analysis, and clinical actionability. There have also been a variety of gene expression signatures established from microarray studies that correlate with relapse and response to treatment, but none of these methods have been implemented as standard of care for oropharyngeal squamous cell carcinoma (OPSCC). Because many genomic methodologies are still far from the capabilities of most clinical laboratories, we chose to explore the use of a combination of off the shelf targeted mutation analysis and gene expression analysis methods to complement standard anatomical pathology methods. Specifically, we have used the Ion Torrent AmpliSeq cancer panel in combination with the NanoString nCounter Human Cancer Reference Kit on 8 formalin-fixed paraffin embedded (FFPE) OPSCC tumor specimens, (4) HPV-positive and (4) HPV-negative. Differential expression analysis between HPV-positive and negative groups showed that expression of several genes was highly likely to correlate with HPV status. For example, WNT1, PDGFA and OGG1 were all over-expressed in the positive group. Our results show the utility of these methods with routine FFPE clinical specimens to identify potential therapeutic targets which could be readily applied in a clinical trial setting for clinical laboratories lacking the instrumentation or bioinformatics infrastructure to support comprehensive genomics workflows. To the best of our knowledge, these preliminary experiments are among the earliest to combine both mutational and gene expression profiles using Ion Torrent and NanoString technologies. This reports serves as a proof of principle methodology in OPSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Simard EP, Torre LA, Jemal A. International trends in head and neck cancer incidence rates: differences by country, sex and anatomic site. Oral Oncol. 2014; Feb 12th.

  2. D’Souza G, Kreimer AR, Viscidi R, et al. Case-control study of human papillomavirus and oropharyngeal cancer. N Engl J Med. 2007;356:1944–56.

  3. Saba NF, Goodman M, Ward K, et al. Gender and ethnic disparities in incidence and survival of squamous cell carcinoma of the oral tongue, base of tongue, and tonsils: a surveillance, epidemiology and end results program-based analysis. Oncology. 2011;81:12–20.

  4. Chaturvedi AK, Engels EA, Anderson WF, Gillison ML. Incidence trends for human papillomavirus-related and -unrelated oral squamous cell carcinomas in the United States. J Clin Oncol. 2008;26:612–9.

  5. Ragin CC, Taioli E. Survival of squamous cell carcinoma of the head and neck in relation to human papillomavirus infection: review and meta-analysis. Int J Cancer. 2007;121:1813–20.

  6. Rampias T, Sasaki C, Weinberger P, Psyrri A. E6 and E7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst. 2009;101:412–23.

  7. Ang KK, Harris J, Wheeler R, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35.

  8. Fakhry C, Westra WH, Li S, et al. Improved survival of patients with human papillomavirus-positive head and neck squamous cell carcinoma in a prospective clinical trial. J Natl Cancer Inst. 2008;100:261–9.

    Article  CAS  PubMed  Google Scholar 

  9. Lau HY, Brar S, Klimowicz AC, et al. Prognostic significance of p16 in locally advanced squamous cell carcinoma of the head and neck treated with concurrent cisplatin and radiotherapy. Head Neck. 2011;33:251–6.

  10. Nichols AC, Faquin WC, Westra WH, et al. HPV-16 infection predicts treatment outcome in oropharyngeal squamous cell carcinoma. Otolaryngol Head Neck Surg. 2009;140:228–34.

    Article  PubMed  Google Scholar 

  11. Liang C, Marsit CJ, McClean MD, et al. Biomarkers of HPV in head and neck squamous cell carcinoma. Cancer Res. 2012;72:5004–13.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Holzinger D, Schmitt M, Dyckhoff G, Benner A, Pawlita M, Bosch FX. Viral RNA patterns and high viral load reliably define oropharynx carcinomas with active HPV16 involvement. Cancer Res. 2012;72:4993–5003.

    Article  CAS  PubMed  Google Scholar 

  13. Schlecht NF, Burk RD, Adrien L, et al. Gene expression profiles in HPV-infected head and neck cancer. J Pathol. 2007;213:283–93.

    Article  CAS  PubMed  Google Scholar 

  14. Sehn JK, Hagemann IS, Pfeifer JD, Cottrell CE, LockWood CM. Diagnostic utility of targeted next-generation sequencing in problematic cases. Am J Surg Pathol. 2014;38:534–41.

    Article  PubMed  Google Scholar 

  15. Hunt JL, Barnes L, Lewis JS, et al. Molecular diagnostic alterations in squamous cell carcinoma of the head and neck and potential diagnostic applications. Eur Arch Otorhinolaryngol. 2014;271:211–23.

    Article  PubMed  Google Scholar 

  16. Brunotto M, Zarate AM, Bono A, Barra JL, Berra S. Risk genes in head and neck cancer: a systematic review and meta-analysis of last 5 years. Oral Oncol. 2014;50:178–88.

    Article  CAS  PubMed  Google Scholar 

  17. Lewis JS Jr. p16 Immunohistochemistry as a standalone test for risk stratification in oropharyngeal squamous cell carcinoma. Head Neck Pathol. 2012;6.

  18. Singh RR, Patel KP, Routbort MJ, et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J Mol Diagn. 2013;15:607–22.

    Article  CAS  PubMed  Google Scholar 

  19. Tsongalis GJ, Peterson JD, de Abreu FB, et al. Routine use of the ion torrent AmpliSeq cancer hotspot panel for identification of clinically actionable somatic mutations. Clin Chem Lab Med. 2014;52:707–14.

    Article  CAS  PubMed  Google Scholar 

  20. Jia P, Pao W, Zhao Z. Patterns and processes of somatic mutations in nine major cancers. BMC Med Genomics. 2014;7:11.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Do H, Dobrovic A. Dramatic reduction of sequence artefacts from DNA isolated from formalin-fixed cancer biopsies by treatment with uracil- DNA glycosylase. Oncotarget. 2012;3:546–58.

    PubMed Central  PubMed  Google Scholar 

  22. Forbes SA, Bindal N, Bamford S, et al. COSMIC: mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res. 2011;39:D945–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Genomes Project C, Abecasis GR, Altshuler D, et al. A map of human genome variation from population-scale sequencing. Nature. 2010;467:1061–73.

    Article  Google Scholar 

  24. Chen Y, McGee J, Chen X, et al. Identification of druggable cancer driver genes amplified across TCGA datasets. PLoS One. 2014;9:e98293.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Cerami E, Gao J, Dogrusoz U, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  PubMed  Google Scholar 

  26. Gao J, Aksoy BA, Dogrusoz U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 2013;6:pl1.

    PubMed Central  PubMed  Google Scholar 

  27. Lui VW, Hedberg ML, Li H, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3:761–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Pickering CR, Zhang J, Yoo SY, et al. Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov. 2013;3:770–81.

    Article  CAS  PubMed  Google Scholar 

  29. Pickering CR, Zhang J, Neskey DM, et al. Squamous cell carcinoma of the oral tongue in young non-smokers is genomically similar to tumors in older smokers. Clin Cancer Res. 2014;20:3842–8.

    Article  CAS  PubMed  Google Scholar 

  30. Pickering CR, Shah K, Ahmed S, et al. CT imaging correlates of genomic expression for oral cavity squamous cell carcinoma. AJNR Am J Neuroradiol. 2013;34:1818–22.

    Article  CAS  PubMed  Google Scholar 

  31. Beard RE, Abate-Daga D, Rosati SF, et al. Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy. Clin Cancer Res. 2013;19:4941–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Laborde RR, Wang VW, Smith TM, et al. Transcriptional profiling by sequencing of oropharyngeal cancer. Mayo Clin Proc. 2012;87:226–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Nichols AC, Chan-Seng-Yue M, Yoo J, et al. A pilot study comparing HPV-positive and HPV-negative head and neck squamous cell carcinomas by whole exome sequencing. ISRN Oncol. 2012;2012:809370.

    PubMed Central  PubMed  Google Scholar 

  34. Zhang Y, Yuan L, Fu L, Liu C, Liu D, Mei C. Overexpression of p18INK(4)C in LLC-PK1 cells increases resistance to cisplatin-induced apoptosis. Pediatr Nephrol. 2011;26:1291–301.

    Article  PubMed  Google Scholar 

  35. Clark ES, Brown B, Whigham AS, Kochaishvili A, Yarbrough WG, Weaver AM. Aggressiveness of HNSCC tumors depends on expression levels of cortactin, a gene in the 11q13 amplicon. Oncogene. 2009;28:431–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Bragado P, Estrada Y, Sosa MS, et al. Analysis of marker-defined HNSCC subpopulations reveals a dynamic regulation of tumor initiating properties. PLoS One. 2012;7:e29974.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Singh J, Jayaraj R, Baxi S, Mileva M, Curtin J, Thomas M. An Australian retrospective study to evaluate the prognostic role of p53 and eIF4E cancer markers in patients with head and neck squamous cell carcinoma (HNSCC): study protocol. Asian Pac J Cancer Prev. 2013;14:4717–21.

    Article  PubMed  Google Scholar 

  38. Mahjabeen I, Chen Z, Zhou X, Kayani MA. Decreased mRNA expression levels of base excision repair (BER) pathway genes is associated with enhanced Ki-67 expression in HNSCC. Med Oncol. 2012;29:3620–5.

    Article  CAS  PubMed  Google Scholar 

  39. Lemaire F, Millon R, Young J, et al. Differential expression profiling of head and neck squamous cell carcinoma (HNSCC). Br J Cancer. 2003;89:1940–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Laytragoon-Lewin N, Rutqvist LE, Lewin F. DNA methylation in tumour and normal mucosal tissue of head and neck squamous cell carcinoma (HNSCC) patients: new diagnostic approaches and treatment. Med Oncol. 2013;30:654.

    Article  PubMed  Google Scholar 

  41. Hass HG, Schmidt A, Nehls O, Kaiser S. DNA ploidy, proliferative capacity and intratumoral heterogeneity in primary and recurrent head and neck squamous cell carcinomas (HNSCC)–potential implications for clinical management and treatment decisions. Oral Oncol. 2008;44:78–85.

    Article  CAS  PubMed  Google Scholar 

  42. Lui VW, Hedberg ML, Li H, et al. Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov. 2013;3(7):761–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Walter V, Yin X, Wilkerson MD, et al. Molecular subtypes in head and neck cancer exhibit distinct patterns of chromosomal gain and loss of canonical cancer genes. PLoS One. 2013;8:e56823.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. McBride SM, Rothenberg SM, Faquin WC, et al. Mutation frequency in 15 common cancer genes in high-risk head and neck squamous cell carcinoma (HNSCC). Head Neck. 2013.

  45. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Jung AC, Job S, Ledrappier S, et al. A poor prognosis subtype of HNSCC is consistently observed across methylome, transcriptome, and miRNome analysis. Clinical Cancer Res. 2013;19:4174–84.

    Article  CAS  Google Scholar 

  47. Georgolios A, Batistatou A, Manolopoulos L, Charalabopoulos K. Role and expression patterns of E-cadherin in head and neck squamous cell carcinoma (HNSCC). J Exp Clin Cancer Res. 2006;25:5–14.

    CAS  PubMed  Google Scholar 

  48. Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;6046.

  49. Agrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333:1154–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Gaykalova DA, Mambo E, Choudhary A, et al. Novel insight into mutational landscape of head and neck squamous cell carcinoma. PLoS One. 2014;9:e93102.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Stransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333:1157–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Chiosea SI, Grandis JR, Lui VW, et al. PIK3CA, HRAS and PTEN in human papillomavirus positive oropharyngeal squamous cell carcinoma. BMC Cancer. 2013;13:602.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Nichols AC, Palma DA, Chow W, et al. High frequency of activating PIK3CA mutations in human papillomavirus-positive oropharyngeal cancer. JAMA Otolaryngol Head Neck Surg. 2013;139(6):617–22.

    Article  PubMed  Google Scholar 

  54. Wang X, Meyers C, Guo M, Zheng ZM. Upregulation of p18Ink4c expression by oncogenic HPV E6 via p53-miR-34a pathway. Int J Cancer. 2011;129:1362–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Sikka A, Kaur M, Agarwal C, Deep G, Agarwal R. Metformin suppresses growth of human head and neck squamous cell carcinoma via global inhibition of protein translation. Cell Cycle. 2012;11:1374–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Chuang JY, Huang YL, Yen WL, Chiang IP, Tsai MH, Tang CH. Syk/JNK/AP-1 signaling pathway mediates interleukin-6-promoted cell migration in oral squamous cell carcinoma. Int J Mol Sci. 2014;15:545–59.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Luangdilok S, Box C, Patterson L, et al. Syk tyrosine kinase is linked to cell motility and progression in squamous cell carcinomas of the head and neck. Cancer Res. 2007;67:7907–16.

    Article  CAS  PubMed  Google Scholar 

  58. Currie KS, Kropf JE, Lee T, et al. Discovery of GS-9973, a selective and orally efficacious inhibitor of spleen tyrosine kinase. J Med Chem. 2014;57:3856–73.

    Article  CAS  PubMed  Google Scholar 

  59. Worden B, Yang XP, Lee TL, et al. Hepatocyte growth factor/scatter factor differentially regulates expression of proangiogenic factors through Egr-1 in head and neck squamous cell carcinoma. Cancer Res. 2005;65:7071–80.

    Article  CAS  PubMed  Google Scholar 

  60. Seiwert TY, Jagadeeswaran R, Faoro L, et al. The MET receptor tyrosine kinase is a potential novel therapeutic target for head and neck squamous cell carcinoma. Cancer Res. 2009;1:3021–31.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil F. Saba.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saba, N.F., Wilson, M., Doho, G. et al. Mutation and Transcriptional Profiling of Formalin-Fixed Paraffin Embedded Specimens as Companion Methods to Immunohistochemistry for Determining Therapeutic Targets in Oropharyngeal Squamous Cell Carcinoma (OPSCC): A Pilot of Proof of Principle. Head and Neck Pathol 9, 223–235 (2015). https://doi.org/10.1007/s12105-014-0566-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-014-0566-0

Keywords

Navigation