Skip to main content

Advertisement

Log in

Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status

  • Review
  • Published:
Journal of Chemical Biology

Abstract

Because understanding amyloid fibrillation in molecular detail is essential for development of strategies to control amyloid formation and overcome neurodegenerative disorders, increased understanding of present molecular probes as well as development of new probes are of utmost importance. To date, the binding modes of these molecular probes to amyloid fibrils are by no means adequately described or understood, and the large number of studies on Thioflavin T (ThT) and Congo Red (CR) binding have resulted in models that are incomplete and conflicting. Different types of binding sites are likely to be present in amyloid fibrils with differences in binding modes. ThT may bind in channels running parallel to the long axis of the fibril. In the channels, ThT may bind in either a monomeric or dimeric form of which the molecular conformation is likely to be planar. CR may bind in grooves formed along the β-sheets as a planar molecule in either a monomeric or supramolecular form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Virchow R (1854) Virchows Arch Pathol Anat Physiol Klin Med 6:416–426

    Google Scholar 

  2. Pettersson T, Konttinen YT (2009) Semin Arthritis Rheum (in press)

  3. Sambashivan S, Eisenberg D (2006) Bio Tech International 18(3):6–10

    Google Scholar 

  4. van de Weert M, Jorgensen L, Moeller EH et al (2005) Expert Opin Drug Deliv 2(6):1029–1037

    Article  Google Scholar 

  5. Nielsen L, Frokjaer S, Carpenter JF et al (2001) J Pharm Sci 90(1):29–37

    Article  CAS  Google Scholar 

  6. Wang W (2005) Int J Pharm 289:1–30

    Article  CAS  Google Scholar 

  7. Brange J, Andersen L, Laursen ED et al (1997) J Pharm Sci 86(5):517–525

    Article  CAS  Google Scholar 

  8. Grillo AO, Edwards KT, Kashi RS et al (2001) Biochemistry 40:586–595

    Article  CAS  Google Scholar 

  9. Onoue S, Ohshima K, Debari K et al (2004) Pharm Res 21(7):1274–1283

    Article  CAS  Google Scholar 

  10. Chiti F, Dobson CM (2006) Annu Rev Biochem 75:333–366

    Article  CAS  Google Scholar 

  11. Maji SK, Schubert D, Rivier C et al (2008) PLoS Biol 6(2):e17

    Article  CAS  Google Scholar 

  12. Otzen D, Nielsen PH (2008) Cell Mol Life Sci 65(6):910–927

    Article  CAS  Google Scholar 

  13. Cohen AS, Calkins E (1959) Nature 183:1202–1203

    Article  CAS  Google Scholar 

  14. Jimenez JL, Nettleton EJ, Bouchard M et al (2002) Proc Natl Acad Sci U S A 99(14):9196–9201

    Article  CAS  Google Scholar 

  15. Khurana R, Ionescu-Zanetti C, Pope M et al (2003) Biophys J 85(2):1135–1144

    Article  CAS  Google Scholar 

  16. Krebs MRH, MacPhee CE, Miller AF et al (2004) Proc Natl Acad Sci U S A 101(40):14420–14424

    Article  CAS  Google Scholar 

  17. Serpell LC, Sunde M, Benson MD et al (2000) J Mol Biol 300(5):1033–1039

    Article  CAS  Google Scholar 

  18. Shirahama T, Cohen AS (1967) J Cell Biol 33(3):679–708

    Article  CAS  Google Scholar 

  19. Westermark P, Benson MD, Buxbaum JN et al (2007) Amyloid 14(3):179–183

    Article  CAS  Google Scholar 

  20. Vestergaard B, Groenning M, Roessle M et al (2007) PLoS Biol 5(5):e134

    Article  CAS  Google Scholar 

  21. Hurshman AR, White JT, Powers ET et al (2004) Biochemistry 43(23):7365–7381

    Article  CAS  Google Scholar 

  22. Naiki H, Gejyo F (1999) Methods Enzymol 20:305–318

    Article  Google Scholar 

  23. Jansen R, Dzwolak W, Winter R (2005) Biophys J 88:1344–1353

    Article  CAS  Google Scholar 

  24. Fodera V, Librizzi F, Groenning M et al (2008) J Phys Chem B 112(12):3853–3858

    Article  CAS  Google Scholar 

  25. Giorgadze TA, Shiina N, Baloch ZW et al (2004) Diagn Cytopathol 31(5):300–306

    Article  Google Scholar 

  26. Nelson R, Sawaya MR, Balbirnie M et al (2005) Nature 435:773–778

    Article  CAS  Google Scholar 

  27. Sawaya MR, Sambashivan S, Nelson R et al (2007) Nature 447:453–457

    Article  CAS  Google Scholar 

  28. Mishra R, Sellin D, Radovan D et al (2009) ChemBioChem 10(3):445–449

    Article  CAS  Google Scholar 

  29. Porat Y, Abramowitz A, Gazit E (2006) Chem Biol Drug Des 67(1):27–37

    Article  CAS  Google Scholar 

  30. Cohen T, Frydman-Marom A, Rechter M et al (2006) Biochemistry 45(15):4727–4735

    Article  CAS  Google Scholar 

  31. Frid P, Anisimov SV, Popovic N (2007) Brain Res Rev 53:135–160

    Article  CAS  Google Scholar 

  32. Howie AJ, Brewer DB (2009) Micron 40(3):285–301

    Article  CAS  Google Scholar 

  33. Ban T, Hamada D, Hasegawa K et al (2003) J Biol Chem 278(19):16462–16465

    Article  CAS  Google Scholar 

  34. McParland VJ, Kad NM, Kalverda AP et al (2000) Biochemistry 39(30):8735–8746

    Article  CAS  Google Scholar 

  35. Turnell WG, Finch JT (1992) J Mol Biol 227(4):1205–1223

    Article  CAS  Google Scholar 

  36. Kim YS, Randolph TW, Manning MC et al (2003) J Biol Chem 278(12):10842–10850

    Article  CAS  Google Scholar 

  37. Sen S, Basdemir G (2003) Pathol Int 53(8):534–538

    Article  Google Scholar 

  38. Klunk WE, Pettegrew JW, Abraham DJ (1989) J Histochem Cytochem 37(8):1293–1297

    CAS  Google Scholar 

  39. Klunk WE, Jacob RF, Mason RP (1999) Anal Biochem 266(1):66–76

    Article  CAS  Google Scholar 

  40. LeVine H III (1997) Arch Biochem Biophys 342(2):306–316

    Article  CAS  Google Scholar 

  41. Caughey B, Ernst D, Race RE (1993) J Virol 67:6270–6272

    CAS  Google Scholar 

  42. Lorenzo A, Yankner BA (1994) Proc Natl Acad Sci U S A 91:12243–12247

    Article  CAS  Google Scholar 

  43. Chander H, Chauhan A, Chauhan V (2007) J Alzheimers Dis 12(3):261–269

    CAS  Google Scholar 

  44. Vassar PS, Culling CFA (1959) Arch Pathol 68(4):487–494

    CAS  Google Scholar 

  45. LeVine H III (1993) Protein Sci 2(3):404–410

    CAS  Google Scholar 

  46. Naiki H, Higuchi K, Hosokawa M et al (1989) Anal Biochem 177:244–249

    Article  CAS  Google Scholar 

  47. Saeed SM, Fine G (1967) Am J Clin Pathol 47(5):588–593

    CAS  Google Scholar 

  48. Andersen CB, Yagi H, Manno M et al (2009) Biophys J 96(4):1529–1536

    Article  CAS  Google Scholar 

  49. Sabate R, Saupe SJ (2007) Biochem Biophys Res Commun 360(1):135–138

    Article  CAS  Google Scholar 

  50. Nielsen L, Khurana R, Coats A et al (2001) Biochemistry 40(20):6036–6046

    Article  CAS  Google Scholar 

  51. Mauro M, Craparo EF, Podesta A et al (2007) J Mol Biol 366(1):258–274

    Article  CAS  Google Scholar 

  52. Naiki H, Higuchi K, Nakakuki K et al (1991) Lab Invest 65(1):104–110

    CAS  Google Scholar 

  53. Groenning M, Norrman M, Flink JM et al (2007) J Struct Biol 159(3):483–497

    Article  CAS  Google Scholar 

  54. LeVine H III (1995) Int J Exp Clin Invest 2:1–6

    CAS  Google Scholar 

  55. Pedersen JS, Dikov D, Flink JL et al (2006) J Mol Biol 355(3):501–523

    Article  CAS  Google Scholar 

  56. Wood SJ, Maleeff B, Hart T et al (1996) J Mol Biol 256(5):870–877

    Article  CAS  Google Scholar 

  57. Kardos J, Okuno D, Kawai T et al (2005) Biochim Biophys Acta, Proteins Proteomics 1753(1):108–120

    Article  CAS  Google Scholar 

  58. Wall J, Murphy CL, Solomon A (1999) Methods Enzymol 309:204–217

    Article  CAS  Google Scholar 

  59. Ahn JS, Lee JH, Kim JH et al (2007) Anal Biochem 367(2):259–265

    Article  CAS  Google Scholar 

  60. Lindgren M, Sörgjerd K, Hammarström P (2005) Biophys J 88:4200–4212

    Article  CAS  Google Scholar 

  61. Kowa H, Sakakura T, Matsuura Y et al (2004) Am J Pathol 165(1):273–281

    CAS  Google Scholar 

  62. Schmidt ML, Robinson KA, Lee VMY et al (1995) Am J Pathol 147(2):503–515

    CAS  Google Scholar 

  63. Crystal AS, Giasson BI, Crowe A et al (2003) J Neurochem 86(6):1359–1368

    Article  CAS  Google Scholar 

  64. Schmidt ML, Schuck T, Sheridan S et al (2001) Am J Pathol 159(3):937–943

    CAS  Google Scholar 

  65. Styren SD, Hamilton RL, Styren GC et al (2000) J Histochem Cytochem 48(9):1223–1232

    CAS  Google Scholar 

  66. Volkova KD, Kovalska VB, Balanda AO et al (2008) Bioorg Med Chem 16(3):1452–1459

    Article  CAS  Google Scholar 

  67. Volkova KD, Kovalska VB, Balanda AO et al (2007) J Biochem Biophys Methods 70(5):727–733

    Article  CAS  Google Scholar 

  68. Luna-Munoz J, Peralta-Ramirez J, Chavez-Macias L et al (2008) Acta Neuropathol 116(5):507–515

    Article  CAS  Google Scholar 

  69. Klunk WE, Debnath ML, Pettegrew JW (1995) Neurobiol Aging 16(4):541–548

    Article  CAS  Google Scholar 

  70. Klunk WE, Engler H, Nordberg A et al (2004) Ann Neurol 55:306–319

    Article  CAS  Google Scholar 

  71. Klunk WE, Wang Y, Huang GF et al (2001) Life Sci 69(13):1471–1484

    Article  CAS  Google Scholar 

  72. Mathis CA, Bacskai BJ, Kajdasz ST et al (2002) Bioorg Med Chem Lett 12(3):295–298

    Article  CAS  Google Scholar 

  73. Cai L, Innis RB, Pike VW (2007) Curr Med Chem 14(1):19–52

    Article  CAS  Google Scholar 

  74. McNamee RL, Yee SH, Price JC et al (2009) J Nucl Med 50(3):348–355

    Article  CAS  Google Scholar 

  75. Wiley CA, Lopresti BJ, Venneti S et al (2009) Arch Neurol 66(1):60–67

    Article  Google Scholar 

  76. Sigurdson CJ, Nilsson KP, Hornemann S et al (2007) Nat Methods 4(12):1023–1030

    Article  CAS  Google Scholar 

  77. Nilsson KP, Hammarstrom P, Ahlgren F et al (2006) ChemBioChem 7(7):1096–1104

    Article  CAS  Google Scholar 

  78. Nilsson KP, Aslund A, Berg I et al (2007) ACS Chem Biol 2(8):553–560

    Article  CAS  Google Scholar 

  79. Sigurdson CJ, Nilsson KP, Hornemann S et al (2009) Proc Natl Acad Sci U S A 106(1):304–309

    Article  Google Scholar 

  80. Nilsson KPR (2009) FEBS Lett In press

  81. Åslund A, Nilsson KPR, Konradsson P (2009) J Chem Biol (in press). doi:10.1007/s12154-009-0024-8

  82. Nilsson KPR, Hammarstrom P (2008) Adv Mater 20:2639–2645

    Article  CAS  Google Scholar 

  83. Nilsson KPR, Herland A, Hammarstrom P et al (2005) Biochemistry 44(10):3718–3724

    Article  CAS  Google Scholar 

  84. Groenning M (2007) Studies on insulin amyloid fibrillation; formation, structure, and detection. Faculty of Pharmaceutical Sciences, University of Copenhagen

  85. De Ferrari GV, Mallender WD, Inestrosa NC (2001) J Biol Chem 276(26):23282–23287

    Article  Google Scholar 

  86. Johnson JL, Cusack B, Davies MP et al (2003) Biochemistry 42(18):5438–5452

    Article  CAS  Google Scholar 

  87. Groenning M, Olsen L, van de Weert M et al (2007) J Struct Biol 158:358–369

    Article  CAS  Google Scholar 

  88. Cundall RB, Davies AK, Morris PG et al (1981) J Photochem 17:369–376

    Article  CAS  Google Scholar 

  89. Khurana R, Coleman C, Ionescu-Zanetti C et al (2005) J Struct Biol 151(3):229–238

    Article  CAS  Google Scholar 

  90. Sabate R, Lascu I, Saupe SJ (2008) J Struct Biol 162(3):387–396

    Article  CAS  Google Scholar 

  91. Lockhart A, Ye L, Judd DB et al (2004) J Biol Chem 280(9):7677–7684

    Article  CAS  Google Scholar 

  92. Bourhim M, Kruzel M, Srikrishnan T et al (2007) J Neurosci Methods 160(2):264–268

    Article  CAS  Google Scholar 

  93. Krebs MRH, Bromley EHC, Donald AM (2005) J Struct Biol 149(1):30–37

    Article  CAS  Google Scholar 

  94. Biancalana M, Makabe K, Koide A et al (2009) J Mol Biol 385(4):1052–1063

    Article  CAS  Google Scholar 

  95. Wu C, Wang Z, Lei H et al (2008) J Mol Biol 384(3):718–729

    Article  CAS  Google Scholar 

  96. Eanes ED, Glenner GG (1968) J Histochem Cytochem 16:673–677

    CAS  Google Scholar 

  97. Serpell LC, Smith JM (2000) J Mol Biol 299(1):225–231

    Article  CAS  Google Scholar 

  98. Stsiapura VI, Maskevich AA, Kuzmitsky VA et al (2007) J Phys Chem A 111(22):4829–4835

    Article  CAS  Google Scholar 

  99. Voropai ES, Samtsov MP, Kaplevskii KN et al (2003) J Appl Spectrosc 70(6):868–874

    Article  CAS  Google Scholar 

  100. Harel M, Sonoda LK, Silman I et al (2008) J Am Chem Soc 130(25):7856–7861

    Article  CAS  Google Scholar 

  101. Dzwolak W, Pecul M (2005) FEBS L 579(29):6601–6603

    Article  CAS  Google Scholar 

  102. Loksztejn A, Dzwolak W (2008) J Mol Biol 379(1):9–16

    Article  CAS  Google Scholar 

  103. Stsiapura VI, Maskevich AA, Kuzmitsky VA et al (2008) J Phys Chem B 112(49):15893–15902

    Google Scholar 

  104. Friedhoff P, Schneider A, Mandelkow E-M et al (1998) Biochemistry 37(28):10223–10230

    Article  CAS  Google Scholar 

  105. Retna Raj C, Ramaraj R (1999) J Photochem Photobiol A 122(1):39–46

    Article  CAS  Google Scholar 

  106. Maskevich AA, Stsiapura VI, Kuzmitsky VA et al (2007) J Proteome Res 6(4):1392–1401

    Article  CAS  Google Scholar 

  107. Pedersen JS (2006) In vitro studies of amyloid-like protein fibrils using glucagon as model system. Aalborg University.

  108. LeVine H III (1999) Methods Enzymol 309(18):274–284

    Article  CAS  Google Scholar 

  109. Retna Raj C, Ramaraj R (1997) Chem Phys Lett 273(3–4):285–290

    Article  CAS  Google Scholar 

  110. Blake C, Serpell L (1996) Structure 4(8):989–998

    Article  CAS  Google Scholar 

  111. Perutz MF, Finch JT, Berriman J et al (2002) Proc Natl Acad Sci U S A 99(8):5591–5595

    Article  CAS  Google Scholar 

  112. Jimenez JL, Guijarro JI, Orlova E et al (1999) EMBO J 18(4):815–821

    Article  CAS  Google Scholar 

  113. Serpell LC, Sunde M, Fraser PE et al (1995) J Mol Biol 254(2):113–118

    Article  CAS  Google Scholar 

  114. Elam JS, Taylor AB, Strange R et al (2003) Nat Struct Biol 10(6):461–467

    Article  CAS  Google Scholar 

  115. Malinchik SB, Inouye H, Szumowski KE et al (1998) Biophys J 74(1):537–545

    Article  CAS  Google Scholar 

  116. Wu C, Wang Z, Lei H et al (2007) J Am Chem Soc 129(5):1225–1232

    Article  CAS  Google Scholar 

  117. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Kluwer, New York

    Google Scholar 

  118. Ilanchelian M, Ramaraj R (2004) J Photochem Photobiol A 162(1):129–137

    Article  CAS  Google Scholar 

  119. Howie AJ, Brewer DB, Howell D et al (2008) Lab Invest 88(3):232–242

    Article  CAS  Google Scholar 

  120. Cooper JH (1974) Lab Invest 31(3):232–238

    CAS  Google Scholar 

  121. Klunk WE, Pettegrew JW, Abraham DJ (1989) J Histochem Cytochem 37(8):1273–1281

    CAS  Google Scholar 

  122. Glenner GG (1980) New Engl J Med 302(23):1283–1292

    CAS  Google Scholar 

  123. Jin LW, Claborn KA, Kurimoto M et al (2003) Proc Natl Acad Sci U S A 100(26):15294–15298

    Article  CAS  Google Scholar 

  124. Romhanyi G (1971) Virchows Arch A Pathol Pathol Anat 354(3):209–222

    Article  CAS  Google Scholar 

  125. Carter DB, Chou KC (1998) Neurobiol Aging 19(1):37–40

    Article  CAS  Google Scholar 

  126. Li L, Darden TA, Bartolotti L et al (1999) Biophys J 76(6):2871–2878

    Article  CAS  Google Scholar 

  127. Miura T, Yamamiya C, Sasaki M et al (2002) J Raman Spectrosc 33:530–535

    Article  CAS  Google Scholar 

  128. Nilsson MR (2004) Methods 34(1):151–160

    Article  CAS  Google Scholar 

  129. Zhen W, Han H, Anguiano M et al (1999) J Med Chem 42(15):2805–2815

    Article  CAS  Google Scholar 

  130. Khurana R, Uversky VN, Nielsen L et al (2001) J Biol Chem 276(25):22715–22721

    Article  CAS  Google Scholar 

  131. Klunk WE, Debnath ML, Pettegrew JW (1994) Neurobiol Aging 15(6):691–698

    Article  CAS  Google Scholar 

  132. Cavillon F, Elhaddaoui A, Alix AJP et al (1997) J Mol Struct 408/409:185–189

    Article  Google Scholar 

  133. skowronek M, Stopa B, Konieczny L et al (1998) Biopolymers 46:267–281

    Article  CAS  Google Scholar 

  134. Stopa B, Piekarska B, Konieczny L et al (2003) Acta Biochim Pol 50(4):1213–1227

    CAS  Google Scholar 

  135. Roterman I, Król M, Nowak M et al (2001) Med Sci Monit 7(4):771–784

    CAS  Google Scholar 

  136. Mourtzis N, Cordoyiannis G, Nounesis G et al (2003) Supramol Chem 15(7–8):639–649

    Article  CAS  Google Scholar 

  137. Sereikaite J, Bumelis VA (2006) Acta Biochim Pol 53(1):87–92

    CAS  Google Scholar 

  138. stopa B, Gorny M, Konieczny L et al (1998) Biochimie 80(12):963–968

    Article  CAS  Google Scholar 

  139. Demaimay R, Harper J, Gordon H et al (1998) J Neurochem 71(6):2534–2541

    Article  CAS  Google Scholar 

  140. Benditt EP, Eriksen N, Berglund C (1970) Proc Natl Acad Sci U S A 66(4):1044–1051

    Article  CAS  Google Scholar 

  141. Agdeppa ED, Kepe V, Liu J et al (2001) J Neurosci 21:189–193

    Google Scholar 

  142. Zhuang ZP, Kung MP, Hou C et al (2001) J Med Chem 44(12):1905–1914

    Article  CAS  Google Scholar 

  143. Bousset L, Redeker V, Decottignies P et al (2004) Biochemistry 43:5022–5032

    Article  CAS  Google Scholar 

  144. Maezawa I, Hong HS, Liu R et al (2008) J Neurochem 104(2):457–468

    CAS  Google Scholar 

  145. Hahn Ch, Kaiser S, Wokaun A (1996) Tenside Surf Det 33(3):209–213

    CAS  Google Scholar 

  146. Bely M, Makovitzky J (2006) Acta Histochem 108(3):175–180

    Article  Google Scholar 

  147. Booth DR, Sunde M, Bellotti V et al (1997) Nature 385:787–793

    Article  CAS  Google Scholar 

  148. Chaiban JT, Kalache SM, bu Alfa AK et al (2008) Am J Med Sci 336(3):293–296

    Article  Google Scholar 

  149. Carrotta R, Bauer R, Waninge R et al (2001) Protein Sci 10(7):1312–1318

    Article  CAS  Google Scholar 

  150. Grudzielanek S, Smirnovas V, Winter R (2006) J Mol Biol 356(2):497–509

    Article  CAS  Google Scholar 

  151. Kumar S, Singh AK, Krishnamoorthy G et al (2008) J Fluoresc 18(6):1199–1205

    Article  CAS  Google Scholar 

  152. Kelenyi G (1967) J Histochem Cytochem 15(3):172–180

    CAS  Google Scholar 

  153. Hoshi M, Sato M, Matsumoto S et al (2003) Proc Natl Acad Sci U S A 100(11):6370–6375

    Article  CAS  Google Scholar 

  154. Bucciantini M, Giannoni E, Chiti F et al (2002) Nature 416:507–511

    Article  CAS  Google Scholar 

  155. Conway KA, Lee SJ, Rochet JC et al (2000) Proc Natl Acad Sci U S A 97(2):571–576

    Article  CAS  Google Scholar 

  156. Lambert MP, Barlow AK, Chromy BA et al (1998) Proc Natl Acad Sci U S A 95(11):6448–6453

    Article  CAS  Google Scholar 

  157. Nilsberth C, Westlind-Danielsson A, Eckman CB et al (2001) Nat Neurosci 4(9):887–893

    Article  CAS  Google Scholar 

  158. Sousa MM, Cardoso I, Fernandes R et al (2001) Am J Pathol 159(6):1993–2000

    CAS  Google Scholar 

  159. Stefani M, Dobson CM (2003) J Mol Med 81:678–699

    Article  CAS  Google Scholar 

  160. Morozova-Roche LA, Zamotin V, Malisauskas M et al (2004) Biochemistry 43(30):9610–9619

    Article  CAS  Google Scholar 

  161. Fodera V, Groenning M, Vetri V et al (2008) J Phys Chem B 112(47):15174–15181

    Article  CAS  Google Scholar 

  162. Meng F, Marek P, Potter KJ et al (2008) Biochemistry 47(22):6016–6024

    Article  CAS  Google Scholar 

  163. Kroes-Nijboer A, Lubbersen YS, Venema P et al (2009) J Struct Biol 165(3):140–145

    Article  CAS  Google Scholar 

  164. Petkova AT, Buntkowsky G, Dyda F et al (2004) J Mol Biol 335(1):247–260

    Article  CAS  Google Scholar 

  165. Sikorski P, Atkins E (2005) Biomacromolecules 6(1):425–432

    Article  CAS  Google Scholar 

  166. Losic D, Martin LL, Mechler A et al (2006) J Struct Biol 155(1):104–110

    Article  CAS  Google Scholar 

  167. Balbach JJ, Petkova AT, Oyler NA et al (2002) Biophys J 83(2):1205–1216

    Article  CAS  Google Scholar 

  168. Benzinger TL, Gregory DM, Burkoth TS et al (1998) Proc Natl Acad Sci U S A 95(23):13407–13412

    Article  CAS  Google Scholar 

  169. Dobson CM (2003) Nature 426(6968):884–890

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Danish Medical Research Council, Novo Nordisk A/S, and the Drug Research Academy are thanked for financial support. The author thanks Bente Vestergaard and Per Hammarström for discussion and critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minna Groenning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—current status. J Chem Biol 3, 1–18 (2010). https://doi.org/10.1007/s12154-009-0027-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-009-0027-5

Keywords

Navigation