Skip to main content
Log in

Laccase-Mediator Pretreatment of Wheat Straw Degrades Lignin and Improves Saccharification

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Agricultural by-products such as wheat straw are attractive feedstocks for the production of second-generation bioethanol due to their high abundance. However, the presence of lignin in these lignocellulosic materials hinders the enzymatic hydrolysis of cellulose. The purposes of this work are to study the ability of a laccase-mediator system to remove lignin improving saccharification, as a pretreatment of wheat straw, and to analyze the chemical modifications produced in the remaining lignin moiety. Up to 48 % lignin removal from ground wheat straw was attained by pretreatment with Pycnoporus cinnabarinus laccase and 1-hydroxybenzotriazole (HBT) as mediator, followed by alkaline peroxide extraction. The lignin removal directly correlated with increases (∼60 %) in glucose yields after enzymatic saccharification. The pretreatment using laccase alone (without mediator) removed up to 18 % of lignin from wheat straw. Substantial lignin removal (37 %) was also produced when the enzyme-mediator pretreatment was not combined with the alkaline peroxide extraction. Two-dimensional nuclear magnetic resonance (2D NMR) analysis of the whole pretreated wheat straw material swollen in dimethylsulfoxide-d 6 revealed modifications of the lignin polymer, including the lower number of aliphatic side chains involved in main β-O-4′ and β-5′ inter-unit linkages per aromatic lignin unit. Simultaneously, the removal of p-hydroxyphenyl, guaiacyl, and syringyl lignin units and of p-coumaric and ferulic acids, as well as a moderate decrease of tricin units, was observed without a substantial change in the wood polysaccharide signals. Especially noteworthy was the formation of Cα-oxidized lignin units during the enzymatic treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  2. Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S (2012) Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresource Technol 117:352–359

    Article  CAS  Google Scholar 

  3. Studer MH, DeMartini JD, Davis MF, Sykes RW, Davison B, Keller M, Tuskan GA, Wyman CE (2011) Lignin content in natural Populus variants affects sugar release. Proc Natl Acad Sci U S A 108:6300–6305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C (2010) Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels 3:27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pareek N, Gillgren T, Jönsson LJ (2013) Adsorption of proteins involved in hydrolysis of lignocellulose on lignins and hemicelluloses. Bioresource Technol 148:70–77

    Article  CAS  Google Scholar 

  6. Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, del Río JC, Gutiérrez A (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20:348–357

    Article  PubMed  Google Scholar 

  7. Xu F (2005) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50

    Article  CAS  Google Scholar 

  8. Lai Y-Z (1992) Determination of phenolic hydroxyl groups. In: Lin SY, Dence CW (eds) Methods in lignin chemistry. Springer-Verlag, Berlin, pp 423–434

    Chapter  Google Scholar 

  9. Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102

    Article  CAS  PubMed  Google Scholar 

  10. Call H-P (1994) Verfahren zur Veränderung, Abbau oder Bleichen von Lignin, ligninhaltigen Materialien oder ähnlichen Stoffen. Patent (International) WO 94/29510

  11. Poppius-Levlin K, Wang W, Tamminen T, Hortling B, Viikari L, Niku-Paavola M-L (1999) Effects of laccase/HBT treatment on pulp and lignin structures. J Pulp Pap Sci 25:90–94

    CAS  Google Scholar 

  12. Camarero S, García O, Vidal T, Colom J, del Río JC, Gutiérrez A, Gras JM, Monje R, Martínez MJ, Martínez AT (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzym Microb Technol 35:113–120

    Article  CAS  Google Scholar 

  13. Gutiérrez A, del Río JC, Martínez AT (2009) Microbial and enzymatic control of pitch in the pulp and paper industry. Appl Microbiol Biotechnol 82:1005–1018

    Article  PubMed  Google Scholar 

  14. Prasetyo EN, Kudanga T, Ostergaard L, Rencoret J, Gutiérrez A, del Río JC, Santos JI, Nieto L, Jimenez-Barbero J, Martínez AT et al (2010) Polymerization of lignosulfonates by the laccase-HBT (1-hydroxybenzotriazole) system improves dispersibility. Bioresource Technol 101:5054–5062

    Article  Google Scholar 

  15. Widsten P, Kandelbauer A (2008) Laccase applications in the forest products industry: a review. Enzym Microb Technol 42:293–307

    Article  CAS  Google Scholar 

  16. Palonen H, Viikari L (2004) Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng 86:550–557

    Article  CAS  PubMed  Google Scholar 

  17. Heap L, Green A, Brown D, van Dongen B, Turner N (2014) Role of laccase as an enzymatic pretreatment method to improve lignocellulosic saccharification. Catal Sci Technol 4:2251–2259

    Article  CAS  Google Scholar 

  18. Moilanen U, Kellock M, Vamai A, Andberg M, Viikari L (2014) Mechanisms of laccase-mediator treatments improving the enzymatic hydrolysis of pre-treated spruce. Biotechnol Biofuels 7:177

    Article  PubMed  PubMed Central  Google Scholar 

  19. Gutiérrez A, Rencoret J, Cadena EM, Rico A, Barth D, del Río JC, Martínez AT (2012) Demonstration of laccase-mediator removal of lignin from wood and non-wood plant feedstocks. Bioresource Technol 119:114–122

    Article  Google Scholar 

  20. Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A (2015) In-depth 2D NMR study of lignin modification during pretreatment of Eucalyptus wood with laccase and mediators. Bioenergy Res 8:211–230

    Article  CAS  Google Scholar 

  21. Chen Q, Marshall MN, Geib SM, Tien M, Richard TL (2012) Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresource Technol 117:186–192

    Article  CAS  Google Scholar 

  22. Jurado M, Prieto A, Martínez-Alcalá MA, Martínez AT, Martínez MJ (2009) Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresource Technol 100:6378–6384

    Article  CAS  Google Scholar 

  23. Oliva-Taravilla A, Tomás-Pejó E, Demuez M, Gonzalez-Fernandez C, Ballesteros M (2015) Inhibition of cellulose enzymatic hydrolysis by laccase-derived compounds from phenols. Biotechnol Prog 31:700–706

    Article  CAS  PubMed  Google Scholar 

  24. Herpoël I, Moukha S, Lesage-Meessen L, Sigoillot JC, Asther M (2000) Selection of Pycnoporus cinnabarinus strains for laccase production. FEMS Microbiol Lett 183:301–306

    Article  PubMed  Google Scholar 

  25. Bourbonnais R, Paice MG, Freiermuth B, Bodie E, Borneman S (1997) Reactivities of various mediators and laccases with kraft pulp and lignin model compounds. Appl Environ Microbiol 63:4627–4632

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Rencoret J, Marques G, Gutiérrez A, Nieto L, Santos I, Jiménez-Barbero J, Martínez AT, del Río JC (2009) HSQC-NMR analysis of lignin in woody (Eucalyptus globulus and Picea abies) and non-woody (Agave sisalana) ball-milled plant materials at the gel state. Holzforschung 63:691–698

    Article  CAS  Google Scholar 

  27. Kim H, Ralph J, Akiyama T (2008) Solution-state 2D NMR of ball-milled plant cell wall gels in DMSO-d 6 . Bioenergy Res 1:56–66

    Article  Google Scholar 

  28. Seo DJ, Fujita H, Sakoda A (2011) Structural changes of lignocelluloses by a nonionic surfactant, Tween 20, and their effects on cellulase adsorption and saccharification. Bioresource Technol 102:9605–9612

    Article  CAS  Google Scholar 

  29. Babot ED, Rico A, Rencoret J, Kalum L, Lund H, Romero J, del Río JC, Martínez AT, Gutiérrez A (2011) Towards industrially feasible delignification and pitch removal by treating paper pulp with Myceliophthora thermophila laccase and a phenolic mediator. Bioresource Technol 102:6717–6722

    Article  CAS  Google Scholar 

  30. Tappi (2006) 2006–2007 TAPPI test methods. Norcoss, GA 30092, USA: TAPPI Press

  31. Selvendran RR, March JF, Ring SG (1979) Determination of aldoses and uronic acid content of vegetable fiber. Anal Biochem 96:282–292

    Article  CAS  PubMed  Google Scholar 

  32. del Río JC, Rencoret J, Prinsen P, Martínez AT, Ralph J, Gutiérrez A (2012) Structural characterization of wheat straw lignin as revealed by analytical pyrolysis, 2D-NMR, and reductive cleavage methods. J Agric Food Chem 60:5922–5935

    Article  PubMed  Google Scholar 

  33. Hatakka A, Hammel KE (2010) Fungal biodegradation of lignocelluloses. In: Hofrichter M (ed) The Mycota. Industrial applications, vol 10. Springer-Verlag, Berlin, pp 319–340

    Google Scholar 

  34. del Río JC, Prinsen P, Rencoret J, Nieto L, Jiménez-Barbero J, Ralph J, Martínez AT, Gutiérrez A (2012) Structural characterization of the lignin in the cortex and pith of Elephant grass (Pennisetum purpureum) stems. J Agric Food Chem 60:3619–3634

    Article  PubMed  Google Scholar 

  35. Moilanen U, Kellock M, Galkin S, Viikari L (2011) The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzym Microb Technol 49:492–498

    Article  CAS  Google Scholar 

  36. Ehara K, Tsutsumi Y, Nishida T (2000) Role of Tween 80 in biobleaching of unbleached hardwood kraft pulp with manganese peroxidase. J Wood Sci 46:137–142

    Article  CAS  Google Scholar 

  37. Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A (2014) In-depth 2D NMR study of lignin modification during pretreatment of Eucalyptus wood with laccase and mediators. Bioenergy Res 8:211–230

    Article  Google Scholar 

  38. Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A (2014) Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock. Biotechnol Biofuels 7:6

    Article  PubMed  PubMed Central  Google Scholar 

  39. Prinsen P, Gutiérrez A, Rencoret J, Nieto L, Jiménez-Barbero J, Burnet A, Petit-Conil M, Colodette JL, Martínez AT, del Río JC (2012) Morphological characteristics and composition of lipophilic extractives and lignin in Brazilian woods from different eucalypt hybrids. Ind Crops Prod 36:572–583

    Article  CAS  Google Scholar 

  40. Rencoret J, Marques G, Gutiérrez A, Ibarra D, Li J, Gellerstedt G, Santos JI, Jiménez-Barbero J, Martínez AT, del Río JC (2008) Structural characterization of milled wood lignin from different eucalypt species. Holzforschung 62:514–526

    Article  CAS  Google Scholar 

  41. Moreno AD, Ibarra D, Alvira P, Tomás-Pejó E, Ballesteros M (2015) Exploring laccase and mediators behavior during saccharification and fermentation of steam-exploded wheat straw for bioethanol production. J Chem Technol Biotechnol. doi:10.1002/jctb.4774

    Google Scholar 

  42. Alvira P, Negro MJ, Ballesteros I, González A, Ballesteros M (2016) Steam explosion for wheat straw pretreatment for sugars production. Bioethanol 2:66–75

    Article  Google Scholar 

  43. Kirk TK, Farrell RL (1987) Enzymatic “combustion”: the microbial degradation of lignin. Annu Rev Microbiol 41:465–505

    Article  CAS  PubMed  Google Scholar 

  44. Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2:164–177

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kawai S, Nakagawa M, Ohashi H (2002) Degradation mechanisms of a nonphenolic β-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole. Enzym Microb Technol 30:482–489

    Article  CAS  Google Scholar 

  46. Cantarella G, Galli C, Gentili P (2003) Free radical versus electron-transfer routes of oxidation of hydrocarbons by laccase-mediator systems. Catalytic and stoichiometric procedures. J Mol Catal B-Enzym 22:135–144

    Article  CAS  Google Scholar 

  47. Areskogh D, Li J, Nousiainen P, Gellerstedt G, Sipila J, Henriksson G (2010) Oxidative polymerisation of models for phenolic lignin end-groups by laccase. Holzforschung 64:21–34

    Article  CAS  Google Scholar 

  48. Eriksson K-EL, Blanchette RA, Ander P (1990) Microbial and enzymatic degradation of wood components. Springer-Verlag, Berlin

    Book  Google Scholar 

  49. Gierer J, Ljunggren S (1979) Reactions of lignins during sulfate pulping.16. Kinetics of the cleavage of β-aryl ether linkages in structures containing carbonyl groups. Svensk Papperstidning-Nordisk Cellulosa 82:71–81

    CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the INDOX EU-project (KBBE-2013-7-613549); the LIGNOCELL, LIGNIN, NOESIS, and BIORENZYMERY Spanish MICINN (co-financed by FEDER funds) projects (AGL2011-25379, CTQ2014-60764-JIN, BIO2014-56388 R and AGL2014-53730-R); and the CSIC (201440E097) Project. A.P. thanks the Spanish MINECO for a FPI fellowship. A. Lomascolo and E. Record from INRA (Marseille, France) are acknowledged for the P. cinnabarinus laccase, and H. Lund and M. Tovborg from Novozymes (Bagsvaerd, Denmark) for Celluclast 1.5L and Novozyme 188.. The authors thank Dr. Angulo for performing the NMR analyses that were acquired on a Bruker AVANCE III 500-MHz instrument from the NMR facilities of the General Research Services of the University of Seville (SGI CITIUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Gutiérrez.

Additional information

Jorge Rencoret and Antonio Pereira contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rencoret, J., Pereira, A., del Río, J.C. et al. Laccase-Mediator Pretreatment of Wheat Straw Degrades Lignin and Improves Saccharification. Bioenerg. Res. 9, 917–930 (2016). https://doi.org/10.1007/s12155-016-9745-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-016-9745-z

Keywords

Navigation