Skip to main content
Log in

Fast Catalytic Co-pyrolysis Characteristics and Kinetics of Chlorella Vulgaris and Municipal Solid Waste over Hierarchical ZSM-5 Zeolite

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

In this work, catalytic co-pyrolysis characteristics and kinetics of chlorella vulgaris (CV), municipal solid waste (MSW), and their blends over hierarchical ZSM-5 zeolite were studied by thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Moreover, three zeolite additives, namely, ZSM-5, Al-MCM-41, and Al-SBA-15, were selected to compare their effects on catalytic co-pyrolysis and coking characteristics with hierarchical ZSM-5 zeolite. Results showed that co-pyrolysis of CV and MSW demonstrated significant synergistic effects at 260–330 °C, especially at the ratio of 5:5. Two model-free methods, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS), were used to calculate the kinetic parameters. Product distribution results demonstrated that co-pyrolysis could improve pyrolysis products by increasing monocyclic aromatic hydrocarbons and aliphatic hydrocarbons as well as reducing polycyclic aromatic hydrocarbons and nitrogen compounds. Compared with other three kinds of zeolite additives, hierarchical ZSM-5 with both micropores and mesopores achieved superior monocyclic aromatic hydrocarbon selectivity (34.14%) and inferior acid selectivity (9.54%) for co-pyrolysis, thereby satisfying the preferred criteria. In addition, the difference from the thermogravimetric curve between after pyrolysis and fresh zeolites indicated that hierarchical ZSM-5 also had the best coking resistance. In brief, co-pyrolysis of chlorella vulgaris and municipal solid waste with hierarchical ZSM-5 was definitely a feasible way for high-quality bio-oil generation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang S, Dai G, Yang H, Luo Z (2017) Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Prog Energy Combust Sci 62:33–86. https://doi.org/10.1016/j.pecs.2017.05.004

    Article  Google Scholar 

  2. Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, Ding Y, Wang C (2019) Pyrolysis of microalgae: A critical review. Fuel Process Technol 186:53–72. https://doi.org/10.1016/j.fuproc.2018.12.012

    Article  CAS  Google Scholar 

  3. Carrero A, Vicente G, Rodríguez R, Linares M, del Peso GL (2011) Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil. Catal Today 167(1):148–153. https://doi.org/10.1016/j.cattod.2010.11.058

    Article  CAS  Google Scholar 

  4. Yanik J, Stahl R, Troeger N, Sinag A (2013) Pyrolysis of algal biomass. J Anal Appl Pyrolysis 103:134–141. https://doi.org/10.1016/j.jaap.2012.08.016

    Article  CAS  Google Scholar 

  5. Wang J, Ma X, Yu Z, Peng X, Lin Y (2018) Studies on thermal decomposition behaviors of demineralized low-lipid microalgae by TG-FTIR. Thermochim Acta 660:101–109. https://doi.org/10.1016/j.tca.2018.01.001

    Article  CAS  Google Scholar 

  6. NBSC (2019) China Statistical Yearbook. China Statistics Press, Beijing

    Google Scholar 

  7. Wang Y, Zhang X, Liao W, Wu J, Yang X, Shui W, Deng S, Zhang Y, Lin L, Xiao Y, Yu X, Peng H (2018) Investigating impact of waste reuse on the sustainability of municipal solid waste (MSW) incineration industry using emergy approach: A case study from Sichuan province, China. Waste Manag 77:252–267. https://doi.org/10.1016/j.wasman.2018.04.003

    Article  PubMed  Google Scholar 

  8. Fang S, Yu Z, Lin Y, Lin Y, Fan Y, Liao Y, Ma X (2016) Effects of additives on the co-pyrolysis of municipal solid waste and paper sludge by using thermogravimetric analysis. Bioresour Technol 209:265–272. https://doi.org/10.1016/j.biortech.2016.03.027

    Article  CAS  PubMed  Google Scholar 

  9. Sipra AT, Gao N, Sarwar H (2018) Municipal solid waste (MSW) pyrolysis for bio-fuel production: A review of effects of MSW components and catalysts. Fuel Process Technol 175:131–147. https://doi.org/10.1016/j.fuproc.2018.02.012

    Article  CAS  Google Scholar 

  10. Fang S, Yu Z, Ma X, Lin Y, Chen L, Liao Y (2018) Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy 143:517–532. https://doi.org/10.1016/j.energy.2017.11.038

    Article  CAS  Google Scholar 

  11. Dong Q, Zhang S, Wu B, Pi M, Xiong Y, Zhang H (2020) Co-pyrolysis of Sewage Sludge and Rice Straw: Thermal Behavior and Char Characteristic Evaluations. Energy Fuel 34(1):607–615. https://doi.org/10.1021/acs.energyfuels.9b03800

    Article  CAS  Google Scholar 

  12. Li Z, Zhong Z, Zhang B, Wang W, Seufitelli GVS, Resende FLP (2020) Catalytic fast co-pyrolysis of waste greenhouse plastic films and rice husk using hierarchical micro-mesoporous composite molecular sieve. Waste Manag 102:561–568. https://doi.org/10.1016/j.wasman.2019.11.012

    Article  CAS  PubMed  Google Scholar 

  13. Peng X, Ma X, Lin Y, Guo Z, Hu S, Ning X, Cao Y, Zhang Y (2015) Co-pyrolysis between microalgae and textile dyeing sludge by TG–FTIR: Kinetics and products. Energy Convers Manag 100:391–402. https://doi.org/10.1016/j.enconman.2015.05.025

    Article  CAS  Google Scholar 

  14. Kositkanawuth K, Bhatt A, Sattler M, Dennis B (2017) Renewable energy from waste: investigation of co-pyrolysis between sargassum macroalgae and polystyrene. Energy Fuel 31(5):5088–5096. https://doi.org/10.1021/acs.energyfuels.6b03397

    Article  CAS  Google Scholar 

  15. Chen L, Yu Z, Liang J, Liao Y, Ma X (2018) Co-pyrolysis of chlorella vulgaris and kitchen waste with different additives using TG-FTIR and Py-GC/MS. Energy Convers Manag 177:582–591. https://doi.org/10.1016/j.enconman.2018.10.010

    Article  CAS  Google Scholar 

  16. Hong Y, Lee Y, Rezaei PS, Kim BS, Jeon J-K, Jae J, Jung S-C, Kim SC, Park Y-K (2017) In-situ catalytic copyrolysis of cellulose and polypropylene over desilicated ZSM-5. Catal Today 293-294:151–158. https://doi.org/10.1016/j.cattod.2016.11.045

    Article  CAS  Google Scholar 

  17. Fogassy G, Thegarid N, Schuurman Y, Mirodatos C (2011) From biomass to bio-gasoline by FCC co-processing: effect of feed composition and catalyst structure on product quality. Energy Environ Sci 4(12):5068. https://doi.org/10.1039/c1ee02012a

    Article  CAS  Google Scholar 

  18. Cai D, Ma Y, Hou Y, Cui Y, Jia Z, Zhang C, Wang Y, Wei F (2017) Establishing a discrete Ising model for zeolite deactivation: inspiration from the game of Go. Catal Sci Technol 7(12):2440–2444. https://doi.org/10.1039/c7cy00331e

    Article  CAS  Google Scholar 

  19. Jeon M-J, Jeon J-K, Suh DJ, Park SH, Sa YJ, Joo SH, Park Y-K (2013) Catalytic pyrolysis of biomass components over mesoporous catalysts using Py-GC/MS. Catal Today 204:170–178. https://doi.org/10.1016/j.cattod.2012.07.039

    Article  CAS  Google Scholar 

  20. Kim Y-M, Jae J, Kim B-S, Hong Y, Jung S-C, Park Y-K (2017) Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts. Energy Convers Manag 149:966–973. https://doi.org/10.1016/j.enconman.2017.04.033

    Article  CAS  Google Scholar 

  21. Ding K, Zhong Z, Wang J, Zhang B, Addy M, Ruan R (2017) Effects of alkali-treated hierarchical HZSM-5 zeolites on the production of aromatic hydrocarbons from catalytic fast pyrolysis of waste cardboard. J Anal Appl Pyrolysis 125:153–161. https://doi.org/10.1016/j.jaap.2017.04.006

    Article  CAS  Google Scholar 

  22. Chi Y, Xue J, Zhuo J, Zhang D, Liu M, Yao Q (2018) Catalytic co-pyrolysis of cellulose and polypropylene over all-silica mesoporous catalyst MCM-41 and Al-MCM-41. Sci Total Environ 633:1105–1113. https://doi.org/10.1016/j.scitotenv.2018.03.239

    Article  CAS  PubMed  Google Scholar 

  23. Wang L, Diao Z, Tian Y, Xiong Z, Liu G (2016) Catalytic Cracking of Endothermic Hydrocarbon Fuels over Ordered Meso-HZSM-5 Zeolites with Al-MCM-41 Shells. Energy Fuel 30(9):6977–6983. https://doi.org/10.1021/acs.energyfuels.6b01160

    Article  CAS  Google Scholar 

  24. Palizdar A, Sadrameli SM (2020) Catalytic upgrading of beech wood pyrolysis oil over iron- and zinc-promoted hierarchical MFI zeolites. Fuel 264:116813. https://doi.org/10.1016/j.fuel.2019.116813

    Article  CAS  Google Scholar 

  25. Dai L, Wang Y, Liu Y, Ruan R, Duan D, Zhao Y, Yu Z, Jiang L (2019) Catalytic fast pyrolysis of torrefied corn cob to aromatic hydrocarbons over Ni-modified hierarchical ZSM-5 catalyst. Bioresour Technol 272:407–414. https://doi.org/10.1016/j.biortech.2018.10.062

    Article  CAS  PubMed  Google Scholar 

  26. Zhou H, Long Y, Meng A, Li Q, Zhang Y (2015) Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis. Waste Manag 38:194–200. https://doi.org/10.1016/j.wasman.2014.09.027

    Article  CAS  PubMed  Google Scholar 

  27. Chen J, Ma X, Yu Z, Deng T, Chen X, Chen L, Dai M (2019) A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS. Bioresour Technol 289:121585. https://doi.org/10.1016/j.biortech.2019.121585

    Article  CAS  PubMed  Google Scholar 

  28. Tang S, Zhang C, Xue X, Pan Z, Wang D, Zhang R (2019) Catalytic pyrolysis of lignin over hierarchical HZSM-5 zeolites prepared by post-treatment with alkaline solutions. J Anal Appl Pyrolysis 137:86–95. https://doi.org/10.1016/j.jaap.2018.11.013

    Article  CAS  Google Scholar 

  29. Dai M, Yu Z, Fang S, Ma X (2019) Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Convers Manag 192:1–10. https://doi.org/10.1016/j.enconman.2019.04.032

    Article  CAS  Google Scholar 

  30. Fang S, Yu Z, Lin Y, Lin Y, Fan Y, Liao Y, Ma X (2017) A study on experimental characteristic of co-pyrolysis of municipal solid waste and paper mill sludge with additives. Appl Therm Eng 111:292–300. https://doi.org/10.1016/j.applthermaleng.2016.09.102

    Article  CAS  Google Scholar 

  31. Chen L, Ma X, Tang F, Li Y, Yu Z, Chen X (2020) Comparison of catalytic effect on upgrading bio-oil derived from co-pyrolysis of water hyacinth and scrap tire over multilamellar MFI nanosheets and HZSM-5. Bioresour Technol 312:123592. https://doi.org/10.1016/j.biortech.2020.123592

    Article  CAS  PubMed  Google Scholar 

  32. Yu Z, Dai M, Huang M, Fang S, Xu J, Lin Y, Ma X (2018) Catalytic characteristics of the fast pyrolysis of microalgae over oil shale: Analytical Py-GC/MS study. Renew Energy 125:465–471. https://doi.org/10.1016/j.renene.2018.02.136

    Article  CAS  Google Scholar 

  33. Che Y, Yang Z, Qiao Y, Zhang J, Tian Y (2018) Study on pyrolysis characteristics and kinetics of vacuum residue and its eight group-fractions by TG-FTIR. Thermochim Acta 669:149–155. https://doi.org/10.1016/j.tca.2018.09.015

    Article  CAS  Google Scholar 

  34. Wang C, Bi H, Lin Q, Jiang X, Jiang C (2020) Co-pyrolysis of sewage sludge and rice husk by TG–FTIR–MS: Pyrolysis behavior, kinetics, and condensable/non-condensable gases characteristics. Renew Energy 160:1048–1066. https://doi.org/10.1016/j.renene.2020.07.046

    Article  CAS  Google Scholar 

  35. Zhang C, Xing J, Song L, Xin H, Lin S, Xing L, Li X (2014) Aqueous-phase hydrodeoxygenation of lignin monomer eugenol: Influence of Si/Al ratio of HZSM-5 on catalytic performances. Catal Today 234:145–152. https://doi.org/10.1016/j.cattod.2014.01.021

    Article  CAS  Google Scholar 

  36. Fernandez C, Stan I, Gilson JP, Thomas K, Vicente A, Bonilla A, Perez-Ramirez J (2010) Hierarchical ZSM-5 Zeolites in Shape-Selective Xylene Isomerization: Role of Mesoporosity and Acid Site Speciation. Chem Eur J 16(21):6224–6233. https://doi.org/10.1002/chem.200903426

    Article  CAS  PubMed  Google Scholar 

  37. Bach Q-V, Chen W-H (2017) A comprehensive study on pyrolysis kinetics of microalgal biomass. Energy Convers Manag 131:109–116. https://doi.org/10.1016/j.enconman.2016.10.077

    Article  CAS  Google Scholar 

  38. Li F, Srivatsa SC, Bhattacharya S (2019) A review on catalytic pyrolysis of microalgae to high-quality bio-oil with low oxygeneous and nitrogenous compounds. Renew Sust Energ Rev 108:481–497. https://doi.org/10.1016/j.rser.2019.03.026

    Article  CAS  Google Scholar 

  39. Hu M, Chen Z, Guo D, Liu C, Xiao B, Hu Z, Liu S (2015) Thermogravimetric study on pyrolysis kinetics of Chlorella pyrenoidosa and bloom-forming cyanobacteria. Bioresour Technol 177:41–50. https://doi.org/10.1016/j.biortech.2014.11.061

    Article  CAS  PubMed  Google Scholar 

  40. Gai C, Zhang Y, Chen WT, Zhang P, Dong Y (2013) Thermogravimetric and kinetic analysis of thermal decomposition characteristics of low-lipid microalgae. Bioresour Technol 150:139–148. https://doi.org/10.1016/j.biortech.2013.09.137

    Article  CAS  PubMed  Google Scholar 

  41. Zhou H, Long Y, Meng A, Li Q, Zhang Y (2015) Interactions of three municipal solid waste components during co-pyrolysis. J Anal Appl Pyrolysis 111:265–271. https://doi.org/10.1016/j.jaap.2014.08.017

    Article  CAS  Google Scholar 

  42. Özsin G, Pütün AE (2019) TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process. Energy Convers Manag 182:143–153. https://doi.org/10.1016/j.enconman.2018.12.060

    Article  CAS  Google Scholar 

  43. Ma C, Yu J, Yan Q, Song Z, Wang K, Wang B, Sun L (2017) Pyrolysis-catalytic upgrading of brominated high impact polystyrene over Fe and Ni modified catalysts: Influence of HZSM-5 and MCM-41 catalysts. Polym Degrad Stab 146:1–12. https://doi.org/10.1016/j.polymdegradstab.2017.09.005

    Article  CAS  Google Scholar 

  44. Hoff TC, Gardner DW, Thilakaratne R, Proano-Aviles J, Brown RC, Tessonnier J-P (2017) Elucidating the effect of desilication on aluminum-rich ZSM-5 zeolite and its consequences on biomass catalytic fast pyrolysis. Appl Catal A-Gen 529:68–78. https://doi.org/10.1016/j.apcata.2016.10.009

    Article  CAS  Google Scholar 

  45. Li J, Li X, Zhou G, Wang W, Wang C, Komarneni S, Wang Y (2014) Catalytic fast pyrolysis of biomass with mesoporous ZSM-5 zeolites prepared by desilication with NaOH solutions. Appl Catal A-Gen 470:115–122. https://doi.org/10.1016/j.apcata.2013.10.040

    Article  CAS  Google Scholar 

  46. Chen L, Yu Z, Fang S, Dai M, Ma X (2018) Co-pyrolysis kinetics and behaviors of kitchen waste and chlorella vulgaris using thermogravimetric analyzer and fixed bed reactor. Energy Convers Manag 165:45–52. https://doi.org/10.1016/j.enconman.2018.03.042

    Article  CAS  Google Scholar 

  47. Dat ND, Chang MB (2017) Review on characteristics of PAHs in atmosphere, anthropogenic sources and control technologies. Sci Total Environ 609:682–693. https://doi.org/10.1016/j.scitotenv.2017.07.204

    Article  CAS  PubMed  Google Scholar 

  48. Qi PY, Chang GZ, Wang HC, Zhang XL, Guo QJ (2018) Production of aromatic hydrocarbons by catalytic co-pyrolysis of microalgae and polypropylene using HZSM-5. J Anal Appl Pyrolysis 136:178–185. https://doi.org/10.1016/j.jaap.2018.10.007

    Article  CAS  Google Scholar 

  49. Ji Y, Yang H, Yan W (2019) Effect of alkali metal cations modification on the acid/basic properties and catalytic activity of ZSM-5 in cracking of supercritical n-dodecane. Fuel 243:155–161. https://doi.org/10.1016/j.fuel.2019.01.105

    Article  CAS  Google Scholar 

  50. Kumar R, Strezov V, Lovell E, Kan T, Weldekidan H, He J, Jahan S, Dastjerdi B, Scott J (2019) Enhanced bio-oil deoxygenation activity by Cu/zeolite and Ni/zeolite catalysts in combined in-situ and ex-situ biomass pyrolysis. J Anal Appl Pyrolysis 140:148–160. https://doi.org/10.1016/j.jaap.2019.03.008

    Article  CAS  Google Scholar 

  51. Foster AJ, Jae J, Cheng Y-T, Huber GW, Lobo RF (2012) Optimizing the aromatic yield and distribution from catalytic fast pyrolysis of biomass over ZSM-5. Appl Catal A-Gen 423-424:154–161. https://doi.org/10.1016/j.apcata.2012.02.030

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Technologies Research and Development Program of China (2018YFC1901200), National Natural Science Foundation of China (51606071), Guangdong Natural Science Foundation (2020A1515010657), Guangzhou Science and Technology Program Key Projects (201804020082), Key Project (Natural Science) of Guangdong High Education Institutes(2019KZDXM068), Fundamental Research Funds for the Central Universities (2019ZD08), and the Key Laboratory of Efficient and Clean Energy Utilization of Guangdong Higher Education Institutes, South China University of Technology (KLB10004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaosheng Yu.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The synergy of CV and MSW optimized pyrolysis product distributions.

• Hi-ZSM-5 achieved the superior MAHs selectivity and inferior acids selectivity.

• Co-pyrolysis lowered the activation energy of 70% MSW with 30%CV.

• Hi-ZSM-5 had better coking resistance compared with unmodified zeolites.

Electronic supplementary material

ESM 1

(DOCX 1173 kb)

Glossary

CV

chlorella vulgaris

MSW

municipal solid waste

Hi-ZSM-5

hierarchical ZSM-5

TGA

thermogravimetric analysis

Py-GC/MS

pyrolysis-gas chromatography/mass spectrometry

7CV3MSW

sample of 70%CV with 30% MSW (mass ratio)

5CV5MSW

sample of 50%CV with 50% MSW (mass ratio)

3CV7MSW

sample of 30%CV with 70% MSW (mass ratio)

PVC

polyvinyl chloride

CFP

catalytic fast pyrolysis

XRD

X-ray diffract

NH3-TPD

ammonia-temperature programmed desorption

N2-TPD

nitrogen-temperature programmed desorption

TG

mass loss

DTG

derivative mass loss

MAHs

monocyclic aromatic hydrocarbons

PAHs

polycyclic aromatic hydrocarbons

AHs

aliphatic hydrocarbon

N-compounds

compounds containing nitrogen

FWO

Flynn-Wall-Ozawa method

KAS

Kissinger-Akahira-Sunose method

E

the apparent activation energy

E ave

the average apparent activation energy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yu, Z., Chen, L. et al. Fast Catalytic Co-pyrolysis Characteristics and Kinetics of Chlorella Vulgaris and Municipal Solid Waste over Hierarchical ZSM-5 Zeolite. Bioenerg. Res. 14, 226–240 (2021). https://doi.org/10.1007/s12155-020-10185-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-020-10185-w

Keywords

Navigation