Skip to main content
Log in

Effects of Ions on Core-Shell Bimetallic Au@Ag NPs for Rapid Detection of Phosalone Residues in Peach by SERS

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

The sensitivity of surface-enhanced Raman spectroscopy (SERS) extremely relies on experimental parameters including pH and aggregating agents. Using Au@Ag nanoparticles (NPs) with 26 nm Au core size and 6 nm Ag shell thickness as the substrate, the effect of cationic (Ca2+, K+, Na+) and anionic (Cl, Br) aggregating agents was investigated on the SERS detection of phosalone. The optimum concentrations of the aggregating agents in relation to the maximum SERS intensity differed broadly from 1 × 10−2 mol/L for CaBr2 to 1 × 101 mol/L for KCl. Both anions and cations greatly affected the SERS enhancement. With employing Br as the anion, Ca2+ and K+ showed the maximum SERS intensities for phosalone, while using Ca2+ as the cation, Br produced the maximum SERS enhancement. Among these aggregating agent combinations, the maximum SERS enhancement was achieved by employing 1 × 10−2 mol/L CaBr2 at pH 3.0. The detection limits of phosalone in standard solution and peach were 0.02 mg/L and 0.2 mg/kg, respectively. This study demonstrated that the Au@Ag NP-based SERS approach could be used as a sensitive, rapid, and simple method for detecting trace contaminants in food matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anh DT, Singh P, Shankar C, Mott D, Maenosono S (2011) Charge-transfer-induced suppression of galvanic replacement and synthesis of (Au@Ag)@Au double shell nanoparticles for highly uniform, robust and sensitive bioprobes. Appl Phys Lett 99(7):073–107

    Google Scholar 

  • CAC. (2013). Pesticides MRLs. Codex Alimentarius Commission. Available from: http://www.fao.org/fao-who-codexalimentarius/codex-texts/dbs/pestres/pesticide-detail/en/?p_id=60 (Accessed on 6 November 2018)

  • Camargo PH, Au L, Rycenga M, Li W, Xia Y (2010) Measuring the SERS enhancement factors of dimers with different structures constructed from silver nanocubes. Chem Phys Lett 484(4–6):304–308

    Article  CAS  Google Scholar 

  • Chamkasem N, Ollis LW, Harmon T, Lee S, Mercer G (2013) Analysis of 136 pesticides in avocado using a modified QuEChERS method with LC-MS/MS and GC-MS/MS. J Agric Food Chem 61(10):2315–2329

    Article  CAS  Google Scholar 

  • Dong X, Gu H, Kang J, Yuan X, Wu J (2010) Comparative study of surface-enhanced Raman scattering activities of three kinds of silver colloids when adding anions as aggregating agents. Colloids Surf A Physicochem Eng Asp 368(1–3):142–147

    Article  CAS  Google Scholar 

  • Fan M, Lai FJ, Chou HL, Lu WT, Hwang BJ, Brolo AG (2013) Surface-enhanced Raman scattering (SERS) from Au: Ag bimetallic nanoparticles: the effect of the molecular probe. Chem Sci 4(1):509–515

    Article  CAS  Google Scholar 

  • Fan Y, Lai K, Rasco BA, Huang Y (2014) Analyses of phosmet residues in apples with surface-enhanced Raman spectroscopy. Food Control 37:153–157

    Article  CAS  Google Scholar 

  • Fang H, Zhang X, Zhang SJ, Liu L, Zhao YM, Xu HJ (2015) Ultrasensitive and quantitative detection of paraquat on fruits skins via surface-enhanced Raman spectroscopy. Sensors Actuators B Chem 213:452–456

    Article  CAS  Google Scholar 

  • Fowler SM, Wood BR, Ottoboni M, Baldi G, Wynn P, van de Ven R, Hopkins DL (2015) Imaging of intact ovine m. semimembranosus by confocal Raman microscopy. Food Bioprocess Technol (11):2279–2286

  • Fu G, Sun D-W, Pu H, Wei Q (2019) Fabrication of gold Nanorods for SERS detection of Thiabendazole in apple. Talanta 195:841–849

    Article  CAS  Google Scholar 

  • Han S, Hong S, Li X (2013) Effects of cations and anions as aggregating agents on SERS detection of cotinine (COT) and trans-3′-hydroxycotinine (3HC). J Colloid Interface Sci 410:74–80

    Article  CAS  Google Scholar 

  • Huan C, An X, Yu M, Jiang L, Ma R, Tu M, Yu Z (2018) Effect of combined heat and 1-MCP treatment on the quality and antioxidant level of peach fruit during storage. Postharvest Biol Technol 145:193–202

    Article  CAS  Google Scholar 

  • Huang S, Hu J, Guo P, Liu M, Wu R (2015) Rapid detection of chlorpyriphos residue in rice by surface-enhanced Raman scattering. Anal Methods 7(10):4334–4339

    Article  CAS  Google Scholar 

  • Huang S, Hu J, Wu R, Liu M, Fan Y, Wang X, Guo P (2016) Establishment of rapid detection method of phosalone residues in pakchoi by surface-enhanced Raman scattering spectroscopy. Spectrosc Lett 49(2):128–134

    Article  CAS  Google Scholar 

  • Jiang J, Zhu L, Zou J, Ou-yang L, Zheng A, Tang H (2015) Micro/nano-structured graphitic carbon nitride–Ag nanoparticle hybrids as surface-enhanced Raman scattering substrates with much improved long-term stability. Carbon 87:193–205

    Article  CAS  Google Scholar 

  • Jiang Y, Sun D-W, Pu H, Wei Q (2018) Surface enhanced Raman spectroscopy (SERS): a novel reliable technique for rapid detection of common harmful chemical residues. Trends Food Sci Technol 75:10–22

    Article  CAS  Google Scholar 

  • Jiang Y, Sun D-W, Pu H, Wei Q (2019) Ultrasensitive analysis of kanamycin residue in milk by SERS-based Aptasensor. Talanta 197:151–158

    Article  CAS  Google Scholar 

  • Lai K, Zhai F, Zhang Y, Wang X, Rasco BA, Huang Y (2011) Application of surface enhanced Raman spectroscopy for analyses of restricted sulfa drugs. Sens Instrumen Food Qual 5(3–4):91–96

    Article  Google Scholar 

  • Lee K-M, Herrman TJ, Nansen C, Yun U (2013) Application of Raman spectroscopy for qualitative and quantitative detection of fumonisins in ground maize samples. J Reg Sci 1(1):1–14

    CAS  Google Scholar 

  • Lee S, Chon H, Yoon SY, Lee EK, Chang SI, Lim DW, Choo J (2012) Fabrication of SERS-fluorescence dual modal nanoprobes and application to multiplex cancer cell imaging. Nanoscale 4(1):124–129

    Article  CAS  Google Scholar 

  • Li X, Zhang S, Yu Z, Yang T (2014) Surface-enhanced Raman spectroscopic analysis of phorate and fenthion pesticide in apple skin using silver nanoparticles. Appl Spectrosc 68(4):483–487

    Article  CAS  Google Scholar 

  • Li JL, Sun D-W, Pu H, Jayas DS (2017) Determination of trace thiophanate-methyl and its metabolite carbendazim with teratogenic risk in red bell pepper (Capsicumannuum L.) by surface-enhanced Raman imaging technique. Food Chem 218:543–552

    Article  CAS  Google Scholar 

  • Liou P, Nayigiziki FX, Kong F, Mustapha A, Lin M (2017) Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples. Carbohydr Polym 157:643–650

    Article  CAS  Google Scholar 

  • Liu B, Han G, Zhang Z, Liu R, Jiang C, Wang S, Han MY (2012) Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal Chem 84(1):255–261

    Article  CAS  Google Scholar 

  • Liu Y, Liu CY, Chen LB, Zhang ZY (2003) Adsorption of cations onto the surfaces of silver nanoparticles. J Colloid Interface Sci 257(2):188–194

    Article  CAS  Google Scholar 

  • Lombardi JR, Birke RL (2009) A unified view of surface-enhanced Raman scattering. Acc Chem Res 42(6):734–742

    Article  CAS  Google Scholar 

  • Lu D, Yang Y, Luo X, Sun C (2013) A fast and easy GC-MS/MS method for simultaneous analysis of 73 pesticide residues in vegetables and fruits. Anal Methods 5(7):1721–1732

    Article  CAS  Google Scholar 

  • Lu X, Al-Qadiri HM, Lin M, Rasco BA (2011) Application of mid-infrared and Raman spectroscopy to the study of bacteria. Food Bioprocess Technol 4(6):919–935

  • Magwaza LS, Tesfay SZ (2015) A review of destructive and non-destructive methods for determining avocado fruit maturity. Food Bioprocess Technol 8(10):1995–2011

    Article  Google Scholar 

  • Maruyama Y, Futamata M (2007) Anion induced SERS activation and quenching for R6G adsorbed on Ag nanoparticles. Chem Phys Lett 448(1–3):93–98

    Article  CAS  Google Scholar 

  • Medina-Dzul K, Muñoz-Rodríguez D, Moguel-Ordoñez Y, Carrera-Figueiras C (2014) Application of mixed solvents for elution of organophosphate pesticides extracted from raw propolis by matrix solid-phase dispersion and analysis by GC-MS. Chem Pap 68(11):1474–1481

    Article  CAS  Google Scholar 

  • Olson TY, Schwartzberg AM, Orme CA, Talley CE, O'Connell B, Zhang JZ (2008) Hollow gold− silver double-shell nanospheres: structure, optical absorption, and surface-enhanced Raman scattering. J Phys Chem C 112(16):6319–6329

    Article  CAS  Google Scholar 

  • Otto A, Bruckbauer A, Chen YX (2003) On the chloride activation in SERS and single molecule SERS. J Mol Struct 661:501–514

    Article  Google Scholar 

  • Pang S, Yang T, He L (2016) Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends Anal Chem 85:73–82

    Article  CAS  Google Scholar 

  • Piotrowski P, Bukowska J (2015) 2-Mercaptoethanesulfonate (MES) anion-functionalized silver nanoparticles as an efficient SERS-based sensor of metal cations. Sensors Actuators B Chem 221:700–707

    Article  CAS  Google Scholar 

  • Pan T-T, Pu H, Sun D-W (2017) Insights into the changes in chemical compositions of the cell wall of pear fruit infected by Alternaria alternata with confocal Raman microspectroscopy. Postharvest Biol Technol 132:119–129

    Article  CAS  Google Scholar 

  • Pan TT, Sun D-W, Pu H, Wei Q, Xiao W, Wang QJ (2017) Detection of A. alternata from pear juice using surface-enhanced Raman spectroscopy-based silver nanodots array. J Food Eng 215:147–155

    Article  CAS  Google Scholar 

  • Pan T-T, Sun D-W, Paliwal J, Pu H, Wei Q (2018a) A new method for accurate determination of polyphenol oxidase activity based on reduction in SERS intensity of catechol. J Agric Food Chem 66(42):11180–11187

    Article  CAS  Google Scholar 

  • Pan T-t, Sun D-W, Pu H, Wei Q (2018b) Simple approach for the rapid detection of alternariol in pear fruit by surface-enhanced Raman scattering with pyridine-modified silver nanoparticles. J Agric Food Chem 66:2180–2187

    Article  CAS  Google Scholar 

  • Pu H, Xiao W, Sun D-W (2017) SERS-microfluidic systems: a potential platform for rapid analysis of food contaminants. Trends Food Sci Technol 70:114–126

    Article  CAS  Google Scholar 

  • Qi M, Huang X, Zhou Y, Zhang L, Jin Y, Peng Y, Du S (2016) Label-free surface-enhanced Raman scattering strategy for rapid detection of penicilloic acid in milk products. Food Chem 197:723–729

    Article  CAS  Google Scholar 

  • Qin J, Chao K, Kim MS, Cho BK (2016) Line-scan macro-scale Raman chemical imaging for authentication of powdered foods and ingredients. Food Bioprocess Technol 9(1):113–123

  • Samal AK, Polavarapu L, Rodal-Cedeira S, Liz-Marzán LM, Pérez-Juste J, Pastoriza-Santos I (2013) Size tunable Au@ Ag core–shell nanoparticles: synthesis and surface-enhanced raman scattering properties. Langmuir 29(48):15076–15082

    Article  CAS  Google Scholar 

  • Saute B, Narayanan R (2011) Solution-based direct readout surface enhanced Raman spectroscopic (SERS) detection of ultra-low levels of thiram with dogbone shaped gold nanoparticles. Analyst 136(3):527–532

    Article  CAS  Google Scholar 

  • Seebunrueng K, Santaladchaiyakit Y, Srijaranai S (2014) Vortex-assisted low density solvent based demulsified dispersive liquid–liquid microextraction and high-performance liquid chromatography for the determination of organophosphorus pesticides in water samples. Chemosphere 103:51–58

    Article  CAS  Google Scholar 

  • Vongsvivut J, Robertson EG, McNaughton D (2010) Surface-enhanced Raman spectroscopic analysis of fonofos pesticide adsorbed on silver and gold nanoparticles. J Raman Spectrosc 41(10):1137–1148

    Article  CAS  Google Scholar 

  • Wei H, Abtahi SMH, Vikesland PJ (2015) Plasmonic colorimetric and SERS sensors for environmental analysis. Environmental Science: Nano 2(2):120–135

    CAS  Google Scholar 

  • Wang K, Sun D-W, Wei Q, Pu H (2018) Quantification and visualization of alpha-tocopherol in oil-in-water emulsion based delivery systems by Raman microspectroscopy. LWT-Food Sci Technol 96:66–74

    Article  CAS  Google Scholar 

  • Wang K, Sun D-W, Pu H, Wei Q (2019) Surface-enhanced Raman scattering of core-shell Au@ Ag nanoparticles aggregates for rapid detection of difenoconazole in grapes. Talanta 191:449–456

    Article  CAS  Google Scholar 

  • Yande L, Yuxiang Z, Haiyang W, Bing Y (2016) Detection of pesticides on navel orange skin by surface-enhanced Raman spectroscopy coupled with Ag nanostructures. Int J Agric Biol Eng 9(2):179–185

    Google Scholar 

  • Yang H, Zhu J, Sheng C, Sun X, Ji J, Ma X (2007) pH-dependent surface-enhanced Raman scattering studies of N-acetylalanine monolayers self-assembled on a silver surface. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering 38(7):890–895

    Article  CAS  Google Scholar 

  • Yang L, Chen Y, Shen Y, Yang M, Li X, Han X, Zhao B (2018) SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol a residues in milk. Talanta 179:37–42

    Article  CAS  Google Scholar 

  • Yaseen T, Sun D-W, Cheng J-H (2017) Raman imaging for food quality and safety evaluation: fundamentals and applications. Trends Food Sci Technol 62:177–189

    Article  CAS  Google Scholar 

  • Yaseen T, Pu H, Sun D-W (2018a) Functionalization techniques for improving SERS substrates and their applications in food safety evaluation: a review of recent research trends. Trends Food Sci Technol 72:162–174

    Article  CAS  Google Scholar 

  • Yaseen T, Pu H, Sun D-W (2019) Fabrication of silver-coated gold nanoparticles to simultaneously detect multi-class insecticide residues in peach with SERS technique. Talanta 196:537–545

    Article  CAS  Google Scholar 

  • Yaseen T, Sun D-W, Pu H, Pan T-T (2018b) Detection of omethoate residues in peach with surface-enhanced Raman spectroscopy. Food Anal Methods 11:2518–2527

    Article  Google Scholar 

  • Zhang Y, Cremer PS (2006) Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 10(6):658–663

    Article  CAS  Google Scholar 

  • Zhang Y, Cremer PS (2009) The inverse and direct Hofmeister series for lysozyme. Proc Natl Acad Sci 106(36):15249–15253

    Article  CAS  Google Scholar 

  • Zhang D, Liang P, Yu Z, Huang J, Ni D, Shu H, Dong QM (2018) The effect of solvent environment toward optimization of SERS sensors for pesticides detection from chemical enhancement aspects. Sensors Actuators B Chem 256:721–728

    Article  CAS  Google Scholar 

  • Zhao Y, Ma Y, Li H, Wang L (2011) Composite QDs@ MIP nanospheres for specific recognition and direct fluorescent quantification of pesticides in aqueous media. Anal Chem 84(1):386–395

    Article  Google Scholar 

  • Zheng J, He L (2014) Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr Rev Food Sci Food Saf 13(3):317–328

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful to the National Key R&D Program of China (2018YFC1603404) for its support. This research was also supported by the Fundamental Research Funds for the Central Universities (2018MS056, 2017MS075), the International and Hong Kong–Macau–Taiwan Collaborative Innovation Platform of Guangdong Province on Intelligent Food Quality Control and Process Technology & Equipment (2015KGJHZ001), the Guangdong Provincial R & D Centre for the Modern Agricultural Industry on Non-destructive Detection and Intensive Processing of Agricultural Products, the Common Technical Innovation Team of Guangdong Province on Preservation and Logistics of Agricultural Products (2016LM2154), and the Innovation Centre of Guangdong Province for Modern Agricultural Science and Technology on Intelligent Sensing and Precision Control of Agricultural Product Qualities. In addition, Tehseen Yaseen is in receipt of a PhD scholarship from the China Scholarship Council (2015GXY244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wen Sun.

Ethics declarations

Conflict of Interest

Tehseen Yaseen declares that she has no conflict of interest. Hongbin Pu declares that he has no conflict of interest. Da-Wen Sun declares that he has no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yaseen, T., Pu, H. & Sun, DW. Effects of Ions on Core-Shell Bimetallic Au@Ag NPs for Rapid Detection of Phosalone Residues in Peach by SERS. Food Anal. Methods 12, 2094–2105 (2019). https://doi.org/10.1007/s12161-019-01454-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-019-01454-2

Keywords

Navigation