Skip to main content
Log in

Pharmacodynamics of T cell function for monitoring pharmacologic immunosuppression after allogeneic hematopoietic stem cell transplantation

  • Original Article
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

Information on pharmacodynamic monitoring after allogeneic hematopoietic cell transplantation (allo-SCT) to evaluate individual responses to immunosuppressive drugs is scarce. We studied the relationship between a panel of pharmacodynamic markers monitored during the first 3 months after transplant and the occurrence of graft-versus-host disease (GVHD). Lymphocyte activation assessed by intracellular ATP concentration in CD4+ T cells, a high percentage of CD8+ effector T cells, and a low percentage of CD4+ regulatory T (Treg) cells correlated significantly with GVHD. A cutoff value of 0.5 for the CD8+ effector T/Treg ratio provided the most accurate diagnosis of GVHD (sensitivity 58.8%, specificity 91%). These pharmacodynamic markers may provide an efficient complement to standard pharmacokinetic monitoring of immunosuppressive drugs after allo-SCT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Choi SW, Reddy P. Current and emerging strategies for the prevention of graft-versus-host disease. Nat Rev Clin Oncol. 2014;11:536–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ruutu, T. Gratwohl A, de Witte T, Afanasyev B, Apperley J, Bacigalupo A, et al. Prophylaxis and treatment of GVHD: EBMT-ELN working group recommendations for a standardized practice. Bone Marrow Transplant 2014;49:168–74.

  3. Ruutu T, van Biezen A, Hertenstein B, Henseler A, Garderet L, Passweg J, et al. Prophylaxis and treatment of GVHD after allogeneic haematopoietic SCT: a survey of centre strategies by the European Group for Blood and Marrow Transplantation. Bone Marrow Transplant. 2012;47:1459–64.

    Article  CAS  PubMed  Google Scholar 

  4. Kahan BD. Therapeutic drug monitoring of cyclosporine: 20 years of progress. Transplant Proc. 2004;36(S1):S378–91.

    Article  Google Scholar 

  5. Wood A, Maurer G, Neiderberger W, Beveridge T. Cyclosporine; pharmacokinetics, metabolism and drug interactions. Transplant Proc. 1983;15:2409–12.

    CAS  Google Scholar 

  6. Atkinson K, Biggs JC, Britton K, Short R, Mrongovius R, Concannon A, et al. Oral administration of cyclosporine A for recipients of allogeneic marrow transplantation: implications of clinical gut dysfunction. Br J Haematol. 1984;56:223–31.

    Article  CAS  PubMed  Google Scholar 

  7. Jacobson P, Green K, Rogosheske J, Brunstein C, Ebeling B, DeFor T, et al. Highly variable mycophenolate mofetil bioavailability following nonmyeloablative hematopoietic cell transplantation. J Clin Pharmacol. 2007;47:6–12.

    Article  CAS  PubMed  Google Scholar 

  8. Bullingham RE, Monroe S, Nicholls A, Hale M. Pharmacokinetics and bioavailability of mycophenolate mofetil in healthy subjects after single-dose oral and intravenous administration. J Clin Pharmacol. 1996;36:315–24.

    Article  CAS  PubMed  Google Scholar 

  9. Bullingham RE, Nicholls AJ, Kamm BR. Clinical pharmacokinetics of mycophenolate mofetil. Clin Pharmacokinet. 1998;34:429–55.

    Article  CAS  PubMed  Google Scholar 

  10. Jenke A, Renner U, Richte M, Freberg-Richter J, Platzbecker U, Helwig A, et al. Pharmacokinetics of intravenous mycophenolate mofetil after allogeneic blood stem cell transplantation. Clin Transplant. 2001;15:176–84.

    Article  CAS  PubMed  Google Scholar 

  11. Vogelsang GB, Arai S. Mycophenolate mofetil for the prevention and treatment of graft-versus-host disease following stem cell transplantation: preliminary findings. Bone Marrow Transplant. 2001;27:1255–62.

    Article  CAS  PubMed  Google Scholar 

  12. Neumann F, Graef T, Tapprich C, Vaupel M, Steidl U, Germing U, et al. Cyclosporine A and mycophenolate mofetil vs cyclosporine A and methetrexate for graft-versus-host disease prophylaxis after stem cell transplantation from HLA-identical siblings. Bone Marrow Transplant. 2005;35:1089–93.

    Article  CAS  PubMed  Google Scholar 

  13. Millán O, Brunet M, Campistol JM, Faura A, Rojo I, Vidal E, et al. Pharmacodynamic approach to immunosuppressive therapies using calcineurin inhibitors and mycophenolate mofetil. Clin Chem. 2003;49:1891–9.

    Article  PubMed  Google Scholar 

  14. Brunet M, Campistol JM, Diekmann F, Guillén D, Millán O. T-cell function monitoring in stable renal transplant patients treated with sirolimus monotherapy. Mol Diag Ther. 2007;11:247–56.

    Article  CAS  Google Scholar 

  15. Millán O, Benitez C, Guillén D, López A, Rimola A, Sánchez-Fueyo A, et al. Biomarkers of immunoregulatory status in stable liver transplant recipients undergoing weaning of immunosuppressive therapy. Clin Immunol. 2010;137:337–46.

    Article  PubMed  Google Scholar 

  16. Millán O, Rafael-Valdivia L, Torrademé E, López A, Fortuna V, Sánchez-Cabus S, et al. Intracellular IFN-γ and IL2 expression monitoring as surrogate markers of the risk of acute rejection and personal drug exposure in the novo liver transplant recipients. Cytokine. 2013;61:556–66.

    Article  PubMed  Google Scholar 

  17. Grinyo JM, Ekberg H, Richard D, Richard D. Mamelok RD, Oppenheimer F, Sánchez-Plumed J, et al. The pharmacokinetics of mycophenolate mofetil in renal transplant recipients receiving standard-dose or low-dose cyclosporine, low-dose tacrolimus or low-dose sirolimus: the symphony pharmacokinetic substudy. Nephrol Dial Transplant 2009;24:2269–76.

  18. Fujioka T, Tamaki H, IkegameK Yoshihara S, Taniguchi K, Kaida K, et al. Frequency of CD4+ FOXP3+ regulatory T-cells at early stages after HLA-mismatched allogeneic hematopoietic SCT predicts the incidence of acute GVHD. Bone Marrow Transplant. 2013;48:859–64.

    Article  CAS  PubMed  Google Scholar 

  19. Magenau JM, Qin X, Tawara I, Rogers CE, Kitko C, Schlough M, et al. Frequency of CD41CD25hiFOXP31 regulatory T cells has diagnostic and prognostic value as a biomarker for acute graft-versus-host-disease. Biol Blood Marrow Transplant. 2010;16:907–14.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rezvani K, Mielke S, Ahmadzadeh M, et al. High donor FOXP3-positive regulatory T-cell (Treg) content is associated with a low risk of GVHD following HLA-matched allogeneic SCT. Blood. 2006;108:1291–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pala P, Hussell T, Openshaw PJ, et al. Flow cytometric measurement of intracellular cytokines. J Immunol Methods. 2000;243:107–24.

    Article  CAS  PubMed  Google Scholar 

  22. Godoy-Ramirez K, Frank K, Mahdavifar S, Andersson L, Gaines H. Optimum culture conditions for specific and nonspecific activation of whole blood and PBMC for intracellular cytokine assessment by flow cytometry. J Immunol Methods. 2004;292:1–15.

    Article  CAS  PubMed  Google Scholar 

  23. Edinger M, Hoffmann P, Ermann J, Drago K, Fathman CG, Strober S, et al. CD4+ CD25+ regulatory T cells preserve graft-versus-tumor activity while inhibiting graft-versus-host disease after bone marrow transplantation. Nat Med. 2003;9:1144–50.

    Article  CAS  PubMed  Google Scholar 

  24. Hoffmann P, Ermann J, Edinger M, Fathman CG, Strober S. Donor-type CD4(+)CD25(+) regulatory T cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med. 2002;196:389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jones SC, Murphy GF, Korngold R. Post-hematopoietic cell transplantation control of graft-versus-host disease by donor CD425 T cells to allow an effective graft-versus-leukemia response. Biol Blood Marrow Transplant. 2003;9:243–56.

    Article  PubMed  Google Scholar 

  26. Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood. 2002;99:3493–9.

    Article  CAS  PubMed  Google Scholar 

  27. Cohen JL, Trenado A, Vasey D, Klatzmann D, Salomon BL. CD4(+)CD25(+) immunoregulatory T cells: new therapeutics for graft-versus-host disease. J Exp Med. 2002;196:401–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ratajczak P, Janin A, Peffault de Latour R, Leboeuf C, Desveaux A, Keyvanfar K, et al. Th17/Treg ratio in human graft-versus-host disease. Blood. 2012;116:1165–71.

    Article  Google Scholar 

  29. Kobashigawa J, Kiyosaki K, Patel J, Kittleson M, Kubak B, Davis S, et al. Benefit of immune monitoring in heart transplant patients using ATP production in activated lymphocytes. J Heart Lung Transplant. 2010;29:504–8.

    Article  PubMed  Google Scholar 

  30. Cadillo-Chavez R, Echegaray S, Santiago-Delpin EA, Rodríguez-Trinidad AT, Camacho-Carrazo B, Alfaro T, et al. Assessing the risk of infection and rejection in hispanic renal transplant recipients by means of an adenosine triphosphate release assay. Transplant Proc. 2006;38:918–20.

    Article  CAS  PubMed  Google Scholar 

  31. Thai NL, Blisard D, Tom K, Basu A, Smetanka C, Tan H, et al. Pancreas transplantation under alemtuzumab (Campath-1H) and tacrolimus: correlation between low T-cell responses and infection. Transplantation. 2006;82:1649–52.

    Article  CAS  PubMed  Google Scholar 

  32. Zeevi A, Britz JA, Bentlejewski CA, Guaspari D, Tong W, Bond G, et al. Monitoring immune function during tacrolimus tapering in small bowel transplant recipients. Transplant Immunol. 2005;15:17–24.

    Article  CAS  Google Scholar 

  33. Kowalski RJ, Post DR, Mannon RB, Sebastian A, Wright HI, Sigle G, et al. Assessing relative risks of infection and rejection: a meta-analysis using an immune function assay. Transplantation. 2006;82:663–8.

    Article  PubMed  Google Scholar 

  34. Wilhelm K, Ganesan J, Müller T, Dürr C, Grimm M, Beilhack A, et al. Graft-versus-host disease is enhanced by extracellular ATP activating P2X7R. Nat Med. 2010;16:1434–9.

    Article  CAS  PubMed  Google Scholar 

  35. Millán O, Rafael-Valdivia L, San Segundo D, Boix F, Castro-Panete MJ, López-Hoyos M, et al. Should IFN-γ, IL-17 and IL-2 be considered predictive biomarkers of acute rejection in liver and kidney transplants? Results of a multicentric study. Clinical Immunol. 2014;154:141–54.

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Instituto de Salud Carlos III (Grant PS09/01043), Subdirección General de Evaluación y Fomento de la Investigación, Ministerio de Economía y Competitividad, España. CIBERehd is funded by the Instituto de Salud Carlos III. The authors thank nurse and technicians teams from Stem Cell Transplantation Unit of Hematology Department and Pharmacology and Toxicology Department, for their excellent assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, C., Millán, O., Rovira, M. et al. Pharmacodynamics of T cell function for monitoring pharmacologic immunosuppression after allogeneic hematopoietic stem cell transplantation. Int J Hematol 105, 497–505 (2017). https://doi.org/10.1007/s12185-016-2145-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-016-2145-5

Keywords

Navigation