Skip to main content
Log in

Numerical solution of singular boundary value problems using Green’s function and improved decomposition method

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

In this work, an effective technique for solving a class of singular two point boundary value problems is proposed. This technique is based on the Adomian decomposition method (ADM) and Green’s function. The technique relies on constructing Green’s function before establishing the recursive scheme for the solution components. In contrast to the existing recursive schemes based on ADM, the proposed recursive scheme avoids solving a sequence of nonlinear algebraic or transcendental equations for the undetermined coefficients. The approximate solution is obtained in the form of series with easily calculable components. For the completeness, the convergence and error analysis of the proposed scheme is supplemented. Moreover, the numerical examples are included to demonstrate the accuracy, applicability, and generality of the proposed scheme. The results reveal that the method is very effective, straightforward, and simple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chawla, M., Katti, C.: Finite difference methods and their convergence for a class of singular two point boundary value problems. Numer. Math. 39(3), 341–350 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cen, Z.: Numerical study for a class of singular two-point boundary value problems using Green’s functions. Appl. Math. Comput. 183(1), 10–16 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kumar, M., Aziz, T.: A uniform mesh finite difference method for a class of singular two-point boundary value problems. Appl. Math. Comput. 180(1), 173–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gray, B.: The distribution of heat sources in the human head—theoretical considerations. J. Theor. Biol. 82(3), 473–476 (1980)

    Article  Google Scholar 

  5. Lin, S.: Oxygen diffusion in a spherical cell with nonlinear oxygen uptake kinetics. J. Theor. Biol. 60(2), 449–457 (1976)

    Article  Google Scholar 

  6. Adomian, G.: Solution of the Thomas-Fermi equation. Appl. Math. Lett. 11(3), 131–133 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jamet, P.: On the convergence of finite-difference approximations to one-dimensional singular boundary-value problems. Numer. Math. 14(4), 355–378 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kumar, M.: A three-point finite difference method for a class of singular two-point boundary value problems. J. Comput. Appl. Math. 145(1), 89–97 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Inc, M., Evans, D.: The decomposition method for solving of a class of singular two-point boundary value problems. Int. J. Comput. Math. 80(7), 869–882 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ebaid, A.: A new analytical and numerical treatment for singular two-point boundary value problems via the Adomian decomposition method. J. Comput. Appl. Math. 235(8), 1914–1924 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Khuri, S., Sayfy, A.: A novel approach for the solution of a class of singular boundary value problems arising in physiology. Math. Comput. Model. 52(3), 626–636 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kumar, M., Singh, N.: Modified Adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems. Comput. Chem. Eng. 34(11), 1750–1760 (2010)

    Article  Google Scholar 

  13. El-Kalla, I.: Error estimates for series solutions to a class of nonlinear integral equations of mixed type. J. Appl. Math. Comput. 38(1), 341–351 (2012)

    Article  MathSciNet  Google Scholar 

  14. El-Sayed, A., Saleh, M., Ziada, E.: Analytical and numerical solution of multi-term nonlinear differential equations of arbitrary orders. J. Appl. Math. Comput. 33(1), 375–388 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Momani, S., Moadi, K.: A reliable algorithm for solving fourth-order boundary value problems. J. Appl. Math. Comput. 22(3), 185–197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Al-Khaled, K., Allan, F.: Decomposition method for solving nonlinear integro-differential equations. J. Appl. Math. Comput. 19(1), 415–425 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haldar, K.: Application of Adomian’s approximation to blood flow through arteries in the presence of a magnetic field. J. Appl. Math. Comput. 12(1), 267–279 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Adomian, G., Rach, R.: Inversion of nonlinear stochastic operators. J. Math. Anal. Appl. 91(1), 39–46 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Adomian, G., Rach, R.: A new algorithm for matching boundary conditions in decomposition solutions. Appl. Math. Comput. 57(1), 61–68 (1993)

    Article  MathSciNet  Google Scholar 

  20. Adomian, G., Rach, R.: Modified decomposition solution of linear and nonlinear boundary-value problems. Nonlinear Anal. 23(5), 615–619 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Methoc [ie Method]. Kluwer Academic, Dordrecht (1994)

    Book  Google Scholar 

  22. Wazwaz, A.: Approximate solutions to boundary value problems of higher order by the modified decomposition method. Comput. Math. Appl. 40(6–7), 679–691 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wazwaz, A.: A reliable algorithm for obtaining positive solutions for nonlinear boundary value problems. Comput. Math. Appl. 41(10–11), 1237–1244 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Benabidallah, M., Cherruault, Y.: Application of the Adomian method for solving a class of boundary problems. Kybernetes 33(1), 118–132 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wazwaz, A.: A new method for solving singular initial value problems in the second-order ordinary differential equations. Appl. Math. Comput. 128(1), 45–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jang, B.: Two-point boundary value problems by the extended Adomian decomposition method. J. Comput. Appl. Math. 219(1), 253–262 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Singh, R., Kumar, J., Nelakanti, G.: New approach for solving a class of doubly singular two-point boundary value problems using Adomian decomposition method. Adv. Numer. Anal. 2012, 541083 (2012). doi:10.1155/2012/541083

    MathSciNet  Google Scholar 

  28. Wazwaz, A., Rach, R.: Comparison of the Adomian decomposition method and the variational iteration method for solving the Lane-Emden equations of the first and second kinds. Kybernetes 40(9/10), 1305–1318 (2011)

    Article  MathSciNet  Google Scholar 

  29. Aziz, T., Kumar, M.: A fourth-order finite-difference method based on non-uniform mesh for a class of singular two-point boundary value problems. J. Comput. Appl. Math. 136(1), 337–342 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randhir Singh.

Appendix

Appendix

Construction of Green’s function of following the problem

Consider the linear differential equation

Integrating the above equation twice first from x to 1 and then from 0 to x, changing the order of integration, and applying the boundary conditions, we obtain

where Green’s function is given by

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R., Kumar, J. & Nelakanti, G. Numerical solution of singular boundary value problems using Green’s function and improved decomposition method. J. Appl. Math. Comput. 43, 409–425 (2013). https://doi.org/10.1007/s12190-013-0670-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-013-0670-4

Keywords

Mathematics Subject Classification

Navigation