Skip to main content
Log in

Performance evaluation of a depth-of-interaction detector by use of position-sensitive PMT with a super-bialkali photocathode

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Our purpose in this work was to evaluate the performance of a 4-layer depth-of-interaction (DOI) detector composed of GSO crystals by use of a position-sensitive photomultiplier tube (PMT) with a super-bialkali photocathode (SBA) by comparing it with a standard bialkali photocathode (BA) regarding the ability to identify the scintillating crystals, energy resolution, and timing resolution. The 4-layer DOI detector was composed of a 16 × 16 array of 2.9 × 2.9 × 7.5 mm3 GSO crystals for each layer and an 8 × 8 multi-anode array type position-sensitive PMT. The DOI was achieved by a reflector control method, and the Anger method was used for calculating interacting points. The energy resolution in full width at half-maximum (FWHM) at 511 keV energy for the top layer (the farthest from the PMT) was improved and was 12.0 % for the SBA compared with the energy resolution of 12.7 % for the BA. As indicators of crystal identification ability, the peak-to-valley ratio and distance-to-width ratio were calculated; the latter was defined as the average of the distance between peaks per the average of the peak width. For both metrics, improvement of several percent was obtained; for example, the peak-to-valley ratio was increased from 1.78 (BA) to 1.86 (SBA), and the distance-to-width ratio was increased from 1.47 (BA) to 1.57 (SBA). The timing resolution (FWHM) in the bottom layer was improved slightly and was 2.4 ns (SBA) compared with 2.5 ns (BA). Better performance of the DOI detector is expected by use of a super bialkali photocathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yamashita T, Watanabe M, Shimizu K, Uchida H. High resolution block detectors for PET. IEEE Trans Nucl Sci. 1990;37:589–93.

    Article  CAS  Google Scholar 

  2. Liu H, Omura T, Watanabe M, Yamashita T. Development of a depth of interaction detector for γ-rays. Nucl Instrum Methods A. 2001;459:182–90.

    Article  CAS  Google Scholar 

  3. Fremout AAR, Chen R, Bruyndonckx P, Tavernier SPK. Spatial resolution and depth-of-interaction studies with a pet detector module composed of LSO and an APD array. IEEE Trans Nucl Sci. 2002;49:31–8.

    Article  Google Scholar 

  4. Carrier C, Martel C, Schmitt D, Lecomte R. Design of a high resolution positron emission tomograph using solid state scintillation detectors. IEEE Trans Nucl Sci. 1988;35:685–90.

    Article  CAS  Google Scholar 

  5. Schmand M, Eriksson L, Casey ME, Andreaco MS, Melcher C, Wienhard K, Flugge G, Nutt R. Performance results of a new DOI detector block for a high resolution PET—LSO research tomograph HRRT. IEEE Trans Nucl Sci. 1998;45:3000–6.

    Article  Google Scholar 

  6. Yamamoto S, Ishibashi H. A GSO depth of interaction detector for PET. IEEE Trans Nucl Sci. 1998;45:1078–82.

    Article  CAS  Google Scholar 

  7. Saoudi A, Pepin CM, Dion F, Bentourkia M, Lecomte R, Andreaco M, Casey M, Nutt R, Dautet H. Investigation of depth-of-interaction by pulse shape discrimination in multicrystal detectors read out by avalanche photodiodes. IEEE Trans Nucl Sci. 1999;46:462–7.

    Article  CAS  Google Scholar 

  8. Seidel J, Vaquero JJ, Siegel S, Gandler WR, Green MV. Depth identification accuracy of a three layer phoswich PET detector module. IEEE Trans Nucl Sci. 1999;46:485–90.

    Article  CAS  Google Scholar 

  9. Ohi J, Tonami H. Investigation of a whole-body DOI-PET system. Nucl Instrum Methods A. 2007;571:223–6.

    Article  CAS  Google Scholar 

  10. Murayama H, Ishibashi H, Uchida H, Omura T, Yamashita T. Depth encoding multicrystal detectors for PET. IEEE Trans Nucl Sci. 1998;45:1152–7.

    Article  CAS  Google Scholar 

  11. Tsuda T, Murayama H, Kitamura K, Yamaya T, Yoshida E, Omura T, Kawai H, Inadama N, Orita N. A four-layer depth of interaction detector block for small animal PET. IEEE Trans Nucl Sci. 2004;51:2537–42.

    Article  Google Scholar 

  12. Ito M, Lee JS, Park M-J, Sim K-W, Hong SJ. Design and simulation of a novel method for determining depth-of-interaction in a PET scintillation crystal array using a single-ended readout by a multi-anode PMT. Phys Med Biol. 2010;55:3827–41.

    Article  PubMed  Google Scholar 

  13. Nishikido F, Inadama N, Oda I, Shibuya K, Yoshida E, Yamaya T, Kitamura K, Murayama H. Four-layer depth-of-interaction PET detector for high resolution PET using a multi-pixel S8550 avalanche photodiode. Nucl Instrum Methods A. 2010;621:570–5.

    Article  CAS  Google Scholar 

  14. Moses WW, Derenzos SE, Melchert CL, Manentet RA. A room temperature LSO/PIN photodiode PET detector module that measures depth of interaction. IEEE Trans Nucl Sci. 1995;42:1085–9.

    Article  Google Scholar 

  15. Miyaoka RS, Lewellen TK, Yu H, McDaniel DL. Design of a depth of interaction (DOI) PET detector module. IEEE Trans Nucl Sci. 1998;45:1069–73.

    Article  CAS  Google Scholar 

  16. Shao Y, Silverman RW, Farrell R, Cirignano L, Grazioso R, Shah KS, Vissel G, Clajus M, Tumer TO, Cherry SR. Design studies of a high resolution PET detector using APD arrays. IEEE Trans Nucl Sci. 2000;47:1051–7.

    Article  Google Scholar 

  17. Dokhale PA, Silverman RW, Shah KS, Grazioso R, Farrell R, Glodo J, McClish MA, Entine G, Tran V-H, Cherry SR. Performance measurements of a depth-encoding PET detector module based on position-sensitive avalanche photodiode read-out. Phys Med Biol. 2004;49:4293–304.

    Article  CAS  PubMed  Google Scholar 

  18. Salvador S, Huss D, Brasse D. Design of a high performances small animal PET system with axial oriented crystals and DOI capability. IEEE Trans Nucl Sci. 2009;56:17–23.

    Article  Google Scholar 

  19. Delfino EP, Majewski S, Raylman RR, Stolin A. Towards 1 mm PET resolution using DOI modules based on dual-sided SiPM readout. IEEE Nucl Sci Symp Conf Rec. 2010:3442–49.http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5874446&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5874446.

  20. Levin CS. Design of a high-resolution and high-sensitivity scintillation crystal array for PET with nearly complete light collection. IEEE Trans Nucl Sci. 2002;49:2236–43.

    Article  Google Scholar 

  21. Clement D, Frei R, Loude J-F, Morel C. Development of a 3D position sensitive scintillation detector using neural networks. IEEE Nucl Sci Symp Conf Rec. 1998;3:1448–52.

    Google Scholar 

  22. Bruyndonckx P, L′eonard S, Tavernier S, Lemaître C, Devroede O, Wu Y, Krieguer M. Neural network-based position estimators for PET detectors using monolithic LSO blocks. IEEE Trans Nucl Sci. 2004;51:2520–5.

    Article  Google Scholar 

  23. Lerche WC. Depth of interaction detection for γ-ray imaging. Nucl Instrum Methods A. 2004;600:624–34.

    Article  Google Scholar 

  24. Maas MC, Schaart DR, van der Laan DJ, Bruyndonckx P, Lemaître C, Beekman FJ, van Eijk CWE. Monolithic scintillator PET detectors with intrinsic depth-of-interaction correction. Phys Med Biol. 2009;54:1893–908.

    Article  PubMed  Google Scholar 

  25. Schaart DR, van Dam HT, Seifert S, Vinke R, Dendooven P, Löhner H, Beekman FJ. A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys Med Biol. 2009;54:3501–12.

    Article  CAS  PubMed  Google Scholar 

  26. van Dam SS, Vinke R, Dendooven P, Löhner H, Beekman FJ, Schaart DR. A practical method for depth of interaction determination in monolithic scintillator PET detectors. Phys Med Biol. 2011;56:4135–45.

    Article  PubMed  Google Scholar 

  27. Yamaya T, Inaniwa T, Minohara S, Yoshida E, Inadama N, Nishikido F, Shibuya K, Lam C-F, Murayama H. A proposal of an open PET geometry. Phys Med Biol. 2011;53:757–73.

    Article  Google Scholar 

  28. Yamaya T, et al. Development of a small prototype for a proof-of-concept of OpenPET imaging. Phys Med Biol. 2011;56:1123–37.

    Article  PubMed  Google Scholar 

  29. Yoshida E, Kinouchi S, Tashima H, Nishikido F, Inadama N, Murayama H, Yamaya T. System design of a small OpenPET prototype with 4-layer DOI detectors. Radiol Phys Technol. 2012;29:92–7.

    Article  Google Scholar 

  30. Bircher C, Shao Y. Use of internal scintillator radioactivity to calibrate DOI function of a PET detector with a dual-ended-scintillator readout. Med Phys. 2012;39:777–87.

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto S, Horii H, Hurutani M, Matsumoto K, Senda M. Investigation of single, random, and true counts from natural radioactivity in LSO-based clinical PET. Ann Nucl Med. 2005;12:109–14.

    Article  Google Scholar 

  32. Watson CC, Casey ME, Eriksson L, Mulnix T, Adams D, Bendriem B. NEMA NU 2 performance tests for scanners with intrinsic radioactivity. J Nucl Med. 2004;45:822–6.

    CAS  PubMed  Google Scholar 

  33. Vaquero JJ, Udlas JM, Seidel J, Espana S, Desco M. Effects of the super bialkali photocathode on the performance characteristics of a position-sensitive depth-of-interaction PET detector module. IEEE Trans Nucl Sci. 2010;57:2437–41.

    Article  CAS  Google Scholar 

  34. Yamamoto S, Watabe H, Kato K, Hatazawa J. Performance comparison of high quantum efficiency and normal quantum efficiency photomultiplier tubes and position sensitive photomultiplier tubes for high resolution PET and SPECT detectors. Med Phys. 2012;39:6900–7.

    Article  PubMed  Google Scholar 

  35. Shimizu S, Sumiya K, Ishibashi H, Senguttvan N, Redkin BS, Ishii M, Kobayashi M, Susa K, Murayama H. Effect of Mg-, Zr-, and Ta-doping on scintillation properties of Gd2SiO5:Ce crystal. IEEE Trans Nucl Sci. 2003;50:7149–74.

    Article  Google Scholar 

  36. Lau FW, Vandenbroucke A, Reynolds PD, Olcott PD, Horowitz MA, Levin CS. Analog signal multiplexing for PSAPD-based PET detectors: simulation and experimental validation. Phys Med Biol. 2010;55:7149–74.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Valais I, Michail C, David S, Nomicos CD, Panayiotakis GS, Kandarakis I. A comparative study of the luminescence properties of LYSO:Ce, LSO:Ce, GSO:Ce and BGO single crystal scintillators for use in medical X-ray imaging. Physica Med. 2008;24:122–5.

    Article  CAS  Google Scholar 

  38. Saint-Goban BrilanCe™ data sheet. http://www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/Documents/Product_Data_Sheets/BrilLanCe380-data-sheet.pdf. Accessed 14 Aug 2013.

  39. Moszyński M, Kapusta M, Wolski D, Klamra W, Cederwall B. Properties of the YAP:Ce scintillator. Nucl Instrum Methods A. 1998;404:157–65.

    Article  Google Scholar 

  40. Saint-Goban BaF2 data sheet http://www.detectors.saint-gobain.com/uploadedFiles/SGdetectors/Documents/Product_Data_Sheets/BaF2-Data-Sheet.pdf. Accessed 1 Aug 2013.

Download references

Acknowledgments

The authors thank Dr. H. Ishibashi of Hitachi Chemical and Mr. M. Nakamura of the Electron Tube Division, Hamamatsu Photonics K.K., for providing data on emission spectra and quantum efficiencies, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshiyuki Hirano.

About this article

Cite this article

Hirano, Y., Nitta, M., Inadama, N. et al. Performance evaluation of a depth-of-interaction detector by use of position-sensitive PMT with a super-bialkali photocathode. Radiol Phys Technol 7, 57–66 (2014). https://doi.org/10.1007/s12194-013-0231-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-013-0231-4

Keywords

Navigation