Skip to main content
Log in

Separating Fluid Shear Stress from Acceleration during Vibrations In Vitro: Identification of Mechanical Signals Modulating the Cellular Response

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

The identification of the physical mechanism(s) by which cells can sense vibrations requires the determination of the cellular mechanical environment. Here, we quantified vibration-induced fluid shear stresses in vitro and tested whether this system allows for the separation of two mechanical parameters previously proposed to drive the cellular response to vibration—fluid shear and peak accelerations. When peak accelerations of the oscillatory horizontal motions were set at 1 g and 60 Hz, peak fluid shear stresses acting on the cell layer reached 0.5 Pa. A 3.5-fold increase in fluid viscosity increased peak fluid shear stresses 2.6-fold while doubling fluid volume in the well caused a 2-fold decrease in fluid shear. Fluid shear was positively related to peak acceleration magnitude and inversely related to vibration frequency. These data demonstrated that peak shear stress can be effectively separated from peak acceleration by controlling specific levels of vibration frequency, acceleration, and/or fluid viscosity. As an example for exploiting these relations, we tested the relevance of shear stress in promoting COX-2 expression in osteoblast like cells. Across different vibration frequencies and fluid viscosities, neither the level of generated fluid shear nor the frequency of the signal were able to consistently account for differences in the relative increase in COX-2 expression between groups, emphasizing that other variables including out-of-phase accelerations of the nucleus may play a role in the cellular response to vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Arnsdorf, E. J., P. Tummala, R. Y. Kwon, and C. R. Jacobs. Mechanically induced osteogenic differentiation—the role of RhoA, ROCKII and cytoskeletal dynamics. J. Cell Sci. 122:546, 2009.

    Article  Google Scholar 

  2. Bacabac, R. G., T. H. Smit, J. J. Van Loon, B. Z. Doulabi, M. Helder, and J. Klein-Nulend. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 20:858, 2006.

    Article  Google Scholar 

  3. Bauer, H. F., and W. Eidel. Oscillations of a viscous liquid in a cylindrical container. Aerosp. Sci. Technol. 1:519, 1997.

    Article  MATH  Google Scholar 

  4. Chen, D. J., F. P. Chiang, Y. S. Tan, and H. S. Don. Digital speckle-displacement measurement using a complex spectrum method. Appl. Opt. 32:1839, 1993.

    Article  Google Scholar 

  5. Chen, W., M. A. Haroun, and F. Liu. Large amplitude liquid sloshing in seismically excited tanks. Earthq. Eng. Struct. Dyn. 25:653, 1996.

    Article  Google Scholar 

  6. Chiang, F. P. Evolution of white light speckle method and its application to micro/nanotechnology and heart mechanics. Opt. Eng. 42:1288, 2003.

    Article  Google Scholar 

  7. Chiang, F. P., and G. Uzer. Mapping full field deformation of auxetic foams using digital speckle photography. Phys. Status Solid B Basic Solid State Phys. 245:2391, 2008.

    Article  Google Scholar 

  8. Chow, J. W. M., and T. J. Chambers. Indomethacin has distinct early and late actions on bone-formation induced by mechanical stimulation. Am. J. Physiol. 267:E287, 1994.

    Google Scholar 

  9. Cox, E. A., J. P. Gleeson, and M. P. Mortell. Nonlinear sloshing and passage through resonance in a shallow water tank. Z. Angew. Math. Phys. 56:645, 2005.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dareing, D. W., D. Yi, and T. Thundat. Vibration response of microcantilevers bounded by a confined fluid. Ultramicroscopy 107:1105, 2007.

    Article  Google Scholar 

  11. Dickerson, D. A., E. A. Sander, and E. A. Nauman. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech. Model. Mechanobiol. 7:191, 2008.

    Article  Google Scholar 

  12. Donahue, T. L. H., T. R. Haut, C. E. Yellowley, H. J. Donahue, and C. R. Jacobs. Mechanosensitivity of bone cells to oscillating fluid flow induced shear stress may be modulated by chemotransport. J. Biomech. 36:1363, 2003.

    Article  Google Scholar 

  13. Donahue, S. W., C. R. Jacobs, and H. J. Donahue. Flow-induced calcium oscillations in rat osteoblasts are age, loading frequency, and shear stress dependent. Am. J. Physiol. Cell Physiol. 281:C1635, 2001.

    Google Scholar 

  14. Faltinsen, O. M., O. F. Rognebakke, I. A. Lukovsky, and A. N. Timokha. Multidimensional modal analysis of nonlinear sloshing in a rectangular tank with finite water depth. J. Fluid Mech. 407:201, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  15. Fischer, D., Y. Li, B. Ahlemeyer, J. Krieglstein, and T. Kissel. In vitro cytotoxicity testing of polycations: influence of polymer structure on cell viability and hemolysis. Biomaterials 24:1121, 2003.

    Article  Google Scholar 

  16. Forwood, M. R. Inducible cyclo-oxygenase (COX-2) mediates the induction of bone formation by mechanical loading in vivo. J. Bone Miner. Res. 11:1688, 1996.

    Article  Google Scholar 

  17. Frame, M. D. S., G. B. Chapman, Y. Makino, and I. H. Sarelius. Shear stress gradient over endothelial cells in a curved microchannel system. Biorheology 35:245, 1998.

    Article  Google Scholar 

  18. Funakoshi, M., K. Taoda, H. Tsujimura, and K. Nishiyama. Measurement of whole-body vibration in taxi drivers. J. Occup. Health. 46:119, 2004.

    Article  Google Scholar 

  19. Garman, R., G. Gaudette, L. R. Donahue, C. Rubin, and S. Judex. Low-level accelerations applied in the absence of weight bearing can enhance trabecular bone formation. J. Orthop. Res. 25:732, 2007.

    Article  Google Scholar 

  20. Goetz, C. G. Jean-Martin Charcot and his vibratory chair for Parkinson disease. Neurology 73:475, 2009.

    Article  Google Scholar 

  21. Gurkan, U. A., and O. Akkus. The mechanical environment of bone marrow: a review. Ann. Biomed. Eng. 36:1978, 2008.

    Article  Google Scholar 

  22. Holguin, N., G. Uzer, F. P. Chiang, C. Rubin, and S. Judex. Brief daily exposure to low-intensity vibration mitigates the degradation of the intervertebral disc in a frequency-specific manner. J. Appl. Physiol. 111:1846, 2011.

    Article  Google Scholar 

  23. Huang, R. P., C. T. Rubin, and K. J. Mcleod. Changes in postural muscle dynamics as a function of age. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 54:B352, 1999.

    Article  Google Scholar 

  24. Humphrey, J. D., and S. Delange. An Introduction to Biomechanics. Springer, 2004.

  25. Ito, Y., T. Kimura, K. Nam, A. Katoh, T. Masuzawa, and A. Kishida. Effects of vibration on differentiation of cultured PC12 cells. Biotechnol. Bioeng. 108:592, 2011.

    Article  Google Scholar 

  26. Jacobs, C. R., C. E. Yellowley, B. R. Davis, Z. Zhou, J. M. Cimbala, and H. J. Donahue. Differential effect of steady versus oscillating flow on bone cells. J. Biomech. 31:969, 1998.

    Article  Google Scholar 

  27. Judex, S., X. Lei, D. Han, and C. Rubin. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude. J. Biomech. 40:1333, 2007.

    Article  Google Scholar 

  28. Judex, S., and C. T. Rubin. Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J. Musculoskelet. Neuronal Interact. 10:3, 2010.

    Google Scholar 

  29. Kiiski, J., A. Heinonen, T. L. Järvinen, P. Kannus, and H. Sievänen. Transmission of vertical whole body vibration to the human body. J. Bone Miner. Res. 23:1318, 2008.

    Article  Google Scholar 

  30. Kim, Y. A numerical study on sloshing flows coupled with ship motion—the anti-rolling tank problem. J. Ship Res. 46:52, 2002.

    Google Scholar 

  31. Lau, E., S. Al-Dujaili, A. Guenther, D. Liu, L. Wang, and L. You. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. Bone 46:1508, 2010.

    Article  Google Scholar 

  32. Lau, E., W. D. Lee, J. Li, A. Xiao, J. E. Davies, Q. Wu, L. Wang, and L. You. Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells. J. Orthop. Res. 29:1075, 2011.

    Article  Google Scholar 

  33. Li, J., D. B. Burr, and C. H. Turner. Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading. Calcif. Tissue Int. 70:320, 2002.

    Article  Google Scholar 

  34. Livak, K. J., and T. D. Schmittgen. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method. Methods 25:402, 2001.

    Article  Google Scholar 

  35. Mester, J., H. Kleinoder, and Z. Yue. Vibration training: benefits and risks. J. Biomech. 39:1056, 2006.

    Article  Google Scholar 

  36. Osawa, Y., and Y. Oguma. Effects of whole-body vibration on resistance training for untrained adults. J. Sport. Sci. Med. 10:328, 2011.

    Google Scholar 

  37. Oxlund, B. S., G. Ortoft, T. T. Andreassen, and H. Oxlund. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats. Bone 32:69, 2003.

    Article  Google Scholar 

  38. Ozcivici, E., R. Garman, and S. Judex. High-frequency oscillatory motions enhance the simulated mechanical properties of non-weight bearing trabecular bone. J. Biomech. 40:3404, 2007.

    Article  Google Scholar 

  39. Poliachik, S. L., D. Threet, S. Srinivasan, and T. S. Gross. 32 wk old C3H/HeJ mice actively respond to mechanical loading. Bone 42:653, 2008.

    Article  Google Scholar 

  40. Ponik, S. M., and F. M. Pavalko. Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release in MC3T3-E1 osteoblasts. J. Appl. Physiol. 97:135, 2004.

    Article  Google Scholar 

  41. Prè, D., G. Ceccarelli, L. Benedetti, G. Magenes, and M. G. C. De Angelis. Effects of low-amplitude, high-frequency vibrations on proliferation and differentiation of SAOS-2 human osteogenic cell line. Tissue Eng. Part C: Methods 15:669, 2009.

    Article  Google Scholar 

  42. Reich, K. M., C. V. Gay, and J. A. Frangos. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production. J. Cell. Physiol. 143:100, 1990.

    Article  Google Scholar 

  43. Romero, J. A., O. Ramirez, J. M. Fortanell, M. Martinez, and A. Lozano. Analysis of lateral sloshing forces within road containers with high fill levels. Proc. Inst. Mech. Eng. Part D-J. Automob. Eng. 220:303, 2006.

    Google Scholar 

  44. Sandhu, E., J. D. Miles, L. E. Dahners, B. V. Keller, and P. S. Weinhold. Whole body vibration increases area and stiffness of the flexor carpi ulnaris tendon in the rat. J. Biomech. 44:1189, 2011.

    Article  Google Scholar 

  45. Sen, B., Z. Xie, N. Case, M. Styner, C. T. Rubin, and J. Rubin. Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44:593, 2011.

    Article  Google Scholar 

  46. Shafrir, Y., and G. Forgacs. Mechanotransduction through the cytoskeleton. Am. J. Physiol.-Cell Physiol. 282:C479, 2002.

    Google Scholar 

  47. Takeuchi, R., T. Saito, H. Ishikawa, H. Takigami, M. Dezawa, C. Ide, Y. Itokazu, M. Ikeda, T. Shiraishi, and S. Morishita. Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes. Arthritis Rheum. 54:1897, 2006.

    Article  Google Scholar 

  48. Tang, Y., C. Grandy, and R. Seidensticker. Seismic response of annular cylindrical tanks. Nucl. Eng. Des. 240:2614, 2010.

    Article  Google Scholar 

  49. Turner, C. H., I. Owan, and Y. Takano. Mechanotransduction in bone: role of strain rate. Am. J. Physiol. 269:E438, 1995.

    Google Scholar 

  50. Wang, C. Z., et al. Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. J. Appl. Physiol. 109:840, 2010.

    Article  Google Scholar 

  51. Weinbaum, S., S. C. Cowin, and Y. Zeng. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27:339, 1994.

    Article  Google Scholar 

  52. Wren, T. A., D. C. Lee, R. Hara, S. A. Rethlefsen, R. M. Kay, F. J. Dorey, and V. Gilsanz. Effect of high-frequency, low-magnitude vibration on bone and muscle in children with cerebral palsy. J. Pediatr. Orthop. 30:732, 2010.

    Article  Google Scholar 

  53. Xie, L., J. M. Jacobson, E. S. Choi, B. Busa, L. R. Donahue, L. M. Miller, C. T. Rubin, and S. Judex. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. Bone 39:1059, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

Funding by the National Institutes of Health (NIAMS) is gratefully acknowledged. Technical expertise from Dr. Michael Hadjiargyrou and Lester Orlick was greatly appreciated.

Disclosures

Clinton Rubin is a founder of Marodyne Medical, Inc. Both Stefan Judex and Clinton Rubin own (provisional) patents regarding the application of vibrations to the musculoskeletal system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Judex.

Additional information

Associate Editor Edward Guo oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzer, G., Manske, S.L., Chan, M.E. et al. Separating Fluid Shear Stress from Acceleration during Vibrations In Vitro: Identification of Mechanical Signals Modulating the Cellular Response. Cel. Mol. Bioeng. 5, 266–276 (2012). https://doi.org/10.1007/s12195-012-0231-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-012-0231-1

Keywords

Navigation