Skip to main content
Log in

Nonlinear optical response of graphene in terahertz and near-infrared frequency regime

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

In this review, we discuss our recent theoretical work on the nonlinear optical response of graphene and its sister structure in terahertz (THz) and near-infrared frequency regime. Due to Dirac-like linear energy-momentum dispersion, the third-order nonlinear current in graphene is much stronger than that in conventional semiconductors. The nonlinear current grows rapidly with increasing temperature and decreasing frequency. The third-order nonlinear current can be as strong as the linear current under moderate electric field strength of 104 V/cm. In bilayer graphene (BLG) with low energy trigonal warping effect, not only the optical response is strongly nonlinear, the optical nonlinearity is well-preserved at elevated temperature. In the presence of a bandgap (such as semihydrogenated graphene (SHG)), there exists two well separated linear response and nonlinear response peaks. This suggests that SHG can have a unique potential as a two-color nonlinear material in the THz frequency regime where the relative intensity of the two colors can be tuned with the electric field. In a graphene superlattice structure of Kronig-Penney type periodic potential, the Dirac cone is elliptically deformed. We found that not only the optical nonlinearity is preserved in such a system, the total optical response is further enhanced by a factor proportional to the band anisotropy. This suggests that graphene superlattice is another potential candidate in THz device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005, 438(7065): 197–200

    Google Scholar 

  2. Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666–669

    Google Scholar 

  3. Wallace P R. The band theory of graphite. Physical Review, 1947, 71(9): 622–634

    MATH  Google Scholar 

  4. Katsnelson M I, Novoselov K S, Geim A K. Chiral tunnelling and the Klein paradox in graphene. Nature Physics, 2006, 2(9): 620–625

    Google Scholar 

  5. Klein O. Die reflexion von elektronen an einem potentialsprung nach der relativistischen dynamik von Dirac. Zeitschrift fur Physik, 1929, 53(3–4): 157–165

    MATH  Google Scholar 

  6. Young A F, Kim P. Quantum interference and Klein tunnelling in graphene heterojunctions. Nature Physics, 2009, 5(3): 222–226

    Google Scholar 

  7. Stander N, Huard B, Goldhaber-Gordon D. Evidence for Klein tunneling in graphene p-n junctions. Physical Review Letters, 2009, 102(2): 026807

    Google Scholar 

  8. Wright A R, Cao J C, Zhang C. Enhanced optical conductivity of bilayer graphene nanoribbons in the terahertz regime. Physical Review Letters, 2009, 103(20): 207401

    Google Scholar 

  9. Wang X L, Dou S X, Zhang C. Zero-gap materials for future spintronics, electronics and optics. NPG Asia Materials, 2010, 2(1): 31–38

    Google Scholar 

  10. Liu J, Ma Z, Wright A R, Zhang C. Orbital magnetization of graphene and graphene nanoribbons. Journal of Applied Physics, 2008, 103(10): 103711

    Google Scholar 

  11. Yu D C, Lupton E M, Gao H J, Zhang C, Liu F. A unified geometric rule for designing nanomagnetism in graphene. Nano Research, 2008, 1(6): 497–501

    Google Scholar 

  12. Cai J Z, Lu L, Kong W J, Zhu H W, Zhang C, Wei B Q, Wu D H, Liu F. Pressure-induced transition in magnetoresistance of singlewalled carbon nanotubes. Physical Review Letters, 2006, 97(2): 026402

    Google Scholar 

  13. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355

    Google Scholar 

  14. Chen J H, Jang C, Xiao S, Ishigami M, Fuhrer M S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 2008, 3(4): 206–209

    Google Scholar 

  15. Geim A K, Novoselov K S. The rise of graphene. Nature Materials, 2007, 6(3): 183–191

    Google Scholar 

  16. Xia F, Farmer D B, Lin Y M, Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. Nano Letters, 2010, 10(2): 715–718

    Google Scholar 

  17. Schwierz F. Graphene transistors. Nature Nanotechnology, 2010, 5(7): 487–496

    Google Scholar 

  18. Zhang Y, Tan Y W, Stormer H L, Kim P. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 2005, 438(7065): 201–204

    Google Scholar 

  19. Gusynin V P, Sharapov S G. Unconventional integer quantum Hall effect in graphene. Physical Review Letters, 2005, 95(14): 146801

    Google Scholar 

  20. Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim A K. Roomtemperature quantum Hall effect in graphene. Science, 2007, 315(5817): 1379

    Google Scholar 

  21. Ziegler K. Minimal conductivity of graphene: nonuniversal values from the Kubo formula. Physical Review B: Condensed Matter and Materials Physics, 2007, 75(23): 233407

    Google Scholar 

  22. Herbut I F, Juricic V, Vafek O. Coulomb interaction, ripples, and the minimal conductivity of graphene. Physical Review Letters, 2008, 100(4): 046403

    Google Scholar 

  23. Peres N M R, Guinea F, Castro Neto A H. Electronic properties of disordered two-dimensional carbon. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(12): 125411

    Google Scholar 

  24. Cserti J, Csordás A, Dávid G. Role of the trigonal warping on the minimal conductivity of bilayer graphene. Physical Review Letters, 2007, 99(6): 066802

    Google Scholar 

  25. Martin J, Akerman N, Ulbricht G, Lohmann T, Smet J H, von Klitzing K, Yacoby A. Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nature Physics, 2008, 4(2): 144–148

    Google Scholar 

  26. Falkovsky L A, Pershoguba S S. Optical far-infrared properties of a graphene monolayer and multilayer. Physical Review B: Condensed Matter and Materials Physics, 2007, 76(15): 153410

    Google Scholar 

  27. Zhang C, Chen L, Ma Z. Orientation dependence of the optical spectra in graphene at high frequencies. Physical Review B, 2008, 77(24): 241402

    Google Scholar 

  28. Gusynin V P, Sharapov S G, Carbotte J P. Unusual microwave response of dirac quasiparticles in graphene. Physical Review Letters, 2006, 96(25): 256802

    Google Scholar 

  29. Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres NMR, Geim A K. Fine structure constant defines visual transparency of graphene. Science, 2008, 320(5881): 1308

    Google Scholar 

  30. Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L, Basov D N. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Physics, 2008, 4(7): 532–535

    Google Scholar 

  31. Kuzmenko A B, van Heumen E, Carbone F, van der Marel D. Universal optical conductance of graphite. Physical Review Letters, 2008, 100(11): 117401

    Google Scholar 

  32. Rycerz A, TworzydŁo J, Beenakker C W J. Valley filter and valley valve in graphene. Nature Physics, 2007, 3(3): 172–175

    Google Scholar 

  33. Gunlycke D, White C T. Graphene valley filter using a line defect. Physical Review Letters, 2011, 106(13): 136806

    Google Scholar 

  34. Garcia-Pomar J L, Cortijo A, Nieto-Vesperinas M. Fully valleypolarized electron beams in graphene. Physical Review Letters, 2008, 100(23): 236801

    Google Scholar 

  35. Pereira J M Jr, Peeters F M, Costa Filho R N, Farias G A. Valley polarization due to trigonal warping on tunneling electrons in graphene. Journal of Physics Condensed Matter, 2009, 21(4): 045301

    Google Scholar 

  36. Chaves A, Covaci L, Rakhimov K Y, Farias G A, Peeters F M. Wave-packet dynamics and valley filter in strained graphene. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(20): 205430

    Google Scholar 

  37. Moldovan D, Masir M R, Covaci L, Peeters F M. Resonant valley filtering of massive Dirac electrons. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(11): 115431

    Google Scholar 

  38. Zhai F, Chang K. Valley filtering in graphene with a Dirac gap. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(15): 155415

    Google Scholar 

  39. Péterfalvi C G, Oroszlány L, Lambert C J, Cserti J. Intraband electron focusing in bilayer graphene. New Journal of Physics, 2012, 14(6): 063028

    Google Scholar 

  40. Majidi L, Zareyan M. Pseudospin polarized quantum transport in monolayer graphene. Physical Review B: Condensed Matter and Materials Physics, 2011, 83(11): 115422

    Google Scholar 

  41. San-Jose P, Prada E, McCann E, Schomerus H. Pseudospin valve in bilayer graphene: towards graphene-based pseudospintronics. Physical Review Letters, 2009, 102(24): 247204

    Google Scholar 

  42. Trushin M, Schliemann J. Pseudospin in optical and transport properties of graphene. Physical Review Letters, 2011, 107(15): 156801

    Google Scholar 

  43. Min H, Borghi G, Polini M, MacDonald A H. Pseudospin magnetism in graphene. Physical Review B, 2008, 77(4): 041407

    Google Scholar 

  44. Majidi L, Zareyan M. Enhanced Andreev reflection in gapped graphene. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(7): 075443

    Google Scholar 

  45. Brey L, Fertig H A. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(23): 235411

    Google Scholar 

  46. Han M Y, Ozyilmaz B, Zhang Y, Kim P. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters, 2007, 98(20): 206805

    Google Scholar 

  47. Ezawa M. Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(4): 045432

    Google Scholar 

  48. Park C H, Yang L, Son Y W, Cohen M L, Louie S G. Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials. Nature Physics, 2008, 4(3): 213–217

    Google Scholar 

  49. Park C H, Yang L, Son Y W, Cohen M L, Louie S G. New generation of massless Dirac fermions in graphene under external periodic potentials. Physical Review Letters, 2008, 101(12): 126804

    Google Scholar 

  50. Park C H, Son Y W, Yang L, Cohen M L, Louie S G. Electron beam supercollimation in graphene superlattices. Nano Letters, 2008, 8(9): 2920–2924

    Google Scholar 

  51. Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Ponomarenko L A, Jiang D, Geim A K. Strong suppression of weak localization in graphene. Physical Review Letters, 2006, 97(1): 016801

    Google Scholar 

  52. Suzuura H, Ando T. Crossover from symplectic to orthogonal class in a two-dimensional honeycomb lattice. Physical Review Letters, 2002, 89(26): 266603

    Google Scholar 

  53. Khveschenko D V. Electron localization properties in graphene. Physical Review Letters, 2006, 97: 036802

    Google Scholar 

  54. Dragoman D, Dragoman M. Giant thermoelectric effect in graphene. Applied Physics Letters, 2007, 91(20): 203116

    Google Scholar 

  55. Wei P, Bao W, Pu Y, Lau C N, Shi J. Anomalous thermoelectric transport of Dirac particles in graphene. Physical Review Letters, 2009, 102(16): 166808

    Google Scholar 

  56. Balandin A A, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau C N. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

    Google Scholar 

  57. Kane C L, Mele E J. Quantum spin Hall effect in graphene. Physical Review Letters, 2005, 95(22): 226801

    Google Scholar 

  58. Nandkishore R, Levitov L S, Chubukov A V. Chiral superconductivity from repulsive interactions in doped graphene. Nature Physics, 2012, 8(2): 158–163

    Google Scholar 

  59. Sarma S D, Adam S, Hwang E H. Electronic transport in twodimensional graphene. Reviews of Modern Physics, 2011, 83(2): 407–439

    Google Scholar 

  60. Bonaccorso F, Sun Z, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622

    Google Scholar 

  61. Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81: 109–162

    Google Scholar 

  62. Beenakker C W J. Colloquium: Andreev reflection and Klein tunneling in graphene. Reviews of Modern Physics, 2008, 80(4): 1337–1354

    Google Scholar 

  63. Hasan M Z, Kane C L. Colloquium: topological insulators. Reviews of Modern Physics, 2010, 82(4): 3045–3067

    Google Scholar 

  64. Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y, Yamada-Takamura Y. Experimental evidence for epitaxial silicene on diboride thin films. Physical Review Letters, 2012, 108(24): 245501

    Google Scholar 

  65. Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B, Le Lay G. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Physical Review Letters, 2012, 108(15): 155501

    Google Scholar 

  66. Bianco E, Butler S, Jiang S, Restrepo O D, Windl W, Goldberger J E. Stability and exfoliation of germanane: a germanium graphane analogue. ACS Nano, 2013, 7(5): 4414–4421

    Google Scholar 

  67. Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W, Zhang S C. Large-gap quantum spin Hall insulators in tin films. Physical Review Letters, 2013, 111(13): 136804

    Google Scholar 

  68. Shareef S, Ang Y S, Zhang C. Room-temperature strong terahertz photon mixing in grapheme. Journal of the Optical Society of America. B, Optical Physics, 2012, 29(3): 274–279

    Google Scholar 

  69. Ang Y S, Sultan S, Zhang C. Nonlinear optical spectrum of bilayer graphene in the terahertz regime. Applied Physics Letters, 2010, 97(24): 243110

    Google Scholar 

  70. Ang Y S, Zhang C. Subgap optical conductivity in semihydrogenated graphene. Applied Physics Letters, 2011, 98(4): 042107

    Google Scholar 

  71. Ang Y S, Zhang C. Enhanced optical conductance in graphene superlattice due to anisotropic band dispersion. Journal of Physics. D, Applied Physics, 2012, 45(39): 395303

    Google Scholar 

  72. Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928

    Google Scholar 

  73. Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401

    Google Scholar 

  74. Mikhailov S A. Non-linear electromagnetic response of graphene. Europhysics Letters, 2007, 79(2): 27002

    Google Scholar 

  75. Mikhailov S A, Ziegler K. Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects. Journal of Physics Condensed Matter, 2008, 20(38): 384204

    Google Scholar 

  76. Dragoman M, Neculoiu D, Deligeorgis G, Konstantinidis G, Dragoman D, Cismaru A, Muller A A, Plana R. Millimeter-wave generation via frequency multiplication in graphene. Applied Physics Letters, 2010, 97(9): 093101

    Google Scholar 

  77. Wright A R, Xu X G, Cao J C, Zhang C. Strong nonlinear optical response of graphene in the terahertz regime. Applied Physics Letters, 2009, 95(7): 072101

    Google Scholar 

  78. Lim G K, Chen Z L, Clark J, Goh R G S, Ng WH, Tan HW, Friend R H, Ho P K H, Chua L L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature Photonics, 2011, 5(9): 554–560

    Google Scholar 

  79. Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J. Broadband nonlinear optical response of graphene dispersions. Advanced Materials, 2009, 21(23): 2430–2435

    Google Scholar 

  80. Hong S Y, Dadap J I, Petrone N, Yeh P C, Hone J, Osgood R M Jr. Optical third-harmonic generation in graphene. Physical Review X, 2013, 3(2): 021014

    Google Scholar 

  81. Wu S, Mao L, Jones A M, Yao W, Zhang C, Xu X. Quantumenhanced tunable second-order optical nonlinearity in bilayer graphene. Nano Letters, 2012, 12(4): 2032–2036

    Google Scholar 

  82. Ishikawa K L. Nonlinear optical response of graphene in time domain. Physical Review B, 2010, 82(20): 201402

    Google Scholar 

  83. Feynman R P. Forces in molecules. Physical Review, 1939, 56(4): 340–343

    MATH  Google Scholar 

  84. Zhang C. Frequency-dependent electrical transport under intense terahertz radiation. Physical Review B: Condensed Matter and Materials Physics, 2002, 66(8): 081105

    Google Scholar 

  85. Ludwig A W W, Fisher M P A, Shankar R, Grinstein G. Integer quantum Hall transition: an alternative approach and exact results. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(11): 7526–7552

    Google Scholar 

  86. Chen C F, Park C H, Boudouris B W, Horng J, Geng B, Girit C, Zettl A, Crommie M F, Segalman R A, Louie S G, Wang F. Controlling inelastic light scattering quantum pathways in graphene. Nature, 2011, 471(7340): 617–620

    Google Scholar 

  87. Gao F, Wang G, Zhang C. Strong photon-mixing of terahertz waves in semiconductor quantum wells induced by Rashba spinorbit coupling. Nanotechnology, 2008, 19(46): 465401

    Google Scholar 

  88. Wolff P A, Pearson G A. Theory of optical mixing by mobile carriers in semiconductors. Physical Review Letters, 1966, 17(19): 1015–1017

    Google Scholar 

  89. Dong H M, Xu W, Tan R B. Temperature relaxation and energy loss of hot carriers in graphene. Solid State Communications, 2010, 150(37–38): 1770–1773

    Google Scholar 

  90. Sun D, Wu Z K, Divin C, Li X, Berger C, de Heer W, First P, Norris T. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Physical Review Letters, 2008, 101(15): 157402

    Google Scholar 

  91. Butscher S, Milde F, Hirtschulz M, Malic E, Knorr A. Hot electron relaxation and phonon dynamics in graphene. Applied Physics Letters, 2007, 91(20): 203103

    Google Scholar 

  92. Bao W S, Liu S Y, Lei X L. Hot-electron transport in graphene driven by intense terahertz fields. Physics Letters. [Part A], 2010, 374(10): 1266–1269

    MATH  Google Scholar 

  93. McCann E, Fal’ko V I. Landau-level degeneracy and quantum Hall effect in a graphite bilayer. Physical Review Letters, 2006, 96(8): 086805

    Google Scholar 

  94. Koshino M, Ando T. Transport in bilayer graphene: calculations within a self-consistent Born approximation. Physical Review B: Condensed Matter and Materials Physics, 2006, 73(24): 245403

    Google Scholar 

  95. McCann C, Abergel D S L, Fal’ko V I. Electrons in bilayer graphene. Solid State Communications, 2007, 143(-2): 110–115

    Google Scholar 

  96. Chen L, Ma Z, Zhang C. Vertical absorption edge and temperature dependent resistivity in semihydrogenated graphene. Applied Physics Letters, 2010, 96(2): 023107

    Google Scholar 

  97. Edwards W F. Special relativity in anisotropic space. American Journal of Physics, 1963, 31(7): 482–489

    MATH  MathSciNet  Google Scholar 

  98. Moon C Y, Han J, Lee H, Choi H J. Low-velocity anisotropic Dirac fermions on the side surface of topological insulators. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(19): 195425

    Google Scholar 

  99. Park J, Lee G, Wolff-Fabris F, Koh Y Y, Eom M J, Kim Y K, Farhan M A, Jo Y J, Kim C, Shim J H, Kim J S. Anisotropic Dirac fermions in a Bi square net of SrMnBi2. Physical Review Letters, 2011, 107(12): 126402

    Google Scholar 

  100. Wang J, Hernandez Y, Lotya M, Coleman J N, Blau W J. Broadband nonlinear optical response of graphene dispersions. Advanced Materials, 2009, 21(23): 2430–2435

    Google Scholar 

  101. Lim G K, Chen Z L, Clark J, Goh R G S, Ng WH, Tan HW, Friend R H, Ho P K H, Chua L L. Giant broadband nonlinear optical absorption response in dispersed graphene single sheets. Nature photonics, 2011, 5(9): 554–560

    Google Scholar 

  102. Hwang E H, Das Sarma S. Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(11): 115449

    Google Scholar 

  103. Song J C, Reizer M Y, Levitov L S. Disorder-assisted electronphonon scattering and cooling pathways in graphene. Physical Review Letters, 2012, 109(10): 106602

    Google Scholar 

  104. Betz A C, Jhang S H, Pallecchi E, Ferreira R, Feve G, Berroir J M, Placais B. Supercollision cooling in undoped graphene. Nature Physics, 2012, 9(2): 109–112

    Google Scholar 

  105. Graham M W, Shi S F, Ralph D C, Park J, McEuen P L. Photocurrent measurements of supercollision cooling in graphene. Nature Physics, 2012, 9(2): 103–108

    Google Scholar 

  106. Xu X G, Cao J C. Nonlinear response induced strong absorptance of graphene in the terahertz regime. Modern Physics Letters B, 2010, 24(21): 2243–2249

    MATH  Google Scholar 

  107. Weiss D, Zhang C, Gerhardts R R, Klitzing K, Weimann G. Density of states in a two-dimensional electron gas in the presence of a one-dimensional superlattice potential. Physical Review B: Condensed Matter and Materials Physics, 1989, 39(17): 13020–13023

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Zhang.

Additional information

Yee Sin Ang was born in Johor Bahru, Malaysia in 1987. He graduated from the University of Wollongong, Australia, with a Bachelor degree in medical and radiation physics (honors) in 2010. He is currently a PhD candidate (theoretical condensed matter physics) at the University of Wollongong. His research interests include nonlinear optical response and transport properties of graphene and other low dimensional nanostructures.

Qinjun Chen is a PhD student of School of Physics and ISEM, at the University of Wollongong, Australia. He obtained his Bachelor degree from Jiangsu University in 2008 majoring in inorganic non-metal materials. He became a master student of South China University of Technology working in Professor Qinyuan Zhang’s group, where he carried out experimental research on rare earth ions doped laser glasses, such as Ho3+ and Tm3+ doped glass ceramics. He completed his master’s degree in material science and engineering in 2011. Later in July 2011, he joined in Professor Chao Zhang’s group in the University of Wollongong to pursuit his PhD degree. His PhD research on theoretical modeling of transport properties of topological insulator, particularly HgTe quantum well (QW) which is known as the first 2 dimensional topological insulator. He investigated the nonlinear response and photo-mixing effect in HgTe QW topological insulators.

Chao Zhang received his MPhil and PhD degree from City University of New York in 1985 and 1987. He was a postdoctoral fellow at Max-Planck-Institute for Solid State Research in Stuttgart, Germany from 1987 to 1989. He was a research associate at TRIUMF in Vancouver Canada from 1989 to 1992. Since 1993, he has been a faculty member of the School of Physics, University of Wollongong, Australia. Currently he is a professor of physics and group leader in terahertz research. He is a fellow of Australian Institute of Physics. His research interest includes terahertz optoelectronics, nonlinear optical properties of semiconductors and graphene, electronic properties of low dimensional semiconductors with spin-orbit coupling, and thermionics in nanomaterials and nanosystems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ang, Y.S., Chen, Q. & Zhang, C. Nonlinear optical response of graphene in terahertz and near-infrared frequency regime. Front. Optoelectron. 8, 3–26 (2015). https://doi.org/10.1007/s12200-014-0428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-014-0428-0

Keywords

Navigation