Skip to main content
Log in

3D printing of glass by additive manufacturing techniques: a review

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM), which is also known as three-dimensional (3D) printing, uses computer-aided design to build objects layer by layer. Here, we focus on the recent progress in the development of techniques for 3D printing of glass, an important optoelectronic material, including fused deposition modeling, selective laser sintering/melting, stereolithography (SLA) and direct ink writing. We compare these 3D printing methods and analyze their benefits and problems for the manufacturing of functional glass objects. In addition, we discuss the technological principles of 3D glass printing and applications of 3D printed glass objects. This review is finalized by a summary of the current achievements and perspectives for the future development of the 3D glass printing technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong K V, Hernandez A. A review of additive manufacturing. ISRN Mechanical Engineering, 2012, 2012: 1–10

    Article  Google Scholar 

  2. Jariwala S H, Lewis G S, Bushman Z J, Adair J H, Donahue H J. 3D printing of personalized artificial bone scaffolds. 3D Printing and Additive Manufacturing, 2015, 2(2): 56–64

    Article  Google Scholar 

  3. Bikas H, Stavropoulos P, Chryssolouris G. Additive manufacturing methods and modelling approaches: a critical review. International Journal of Advanced Manufacturing Technology, 2015, 83(1–4): 389–405

    Google Scholar 

  4. Balling P, Schou J. Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films. Reports on Progress in Physics, 2013, 76(3): 036502

    Article  Google Scholar 

  5. Chia H N, Wu B M. Recent advances in 3D printing of biomaterials. Journal of Biological Engineering, 2015, 9(1): 4

    Article  Google Scholar 

  6. Berman B. 3-D printing: the new industrial revolution. Business Horizons, 2012, 55(2): 155–162

    Article  Google Scholar 

  7. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today, 2013, 16(12): 496–504

    Article  Google Scholar 

  8. Gross B C, Erkal J L, Lockwood S Y, Chen C, Spence D M. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Analytical Chemistry, 2014, 86(7): 3240–3253

    Article  Google Scholar 

  9. Liu N, Guo H, Fu L, Kaiser S, Schweizer H, Giessen H. Three-dimensional photonic metamaterials at optical frequencies. Nature Materials, 2008, 7(1): 31–37

    Article  Google Scholar 

  10. Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann C M, Unterhinninghofen R, Kauczor H U, Giesel F L. 3D printing based on imaging data: review of medical applications. International Journal of Computer Assisted Radiology and Surgery, 2010, 5(4): 335–341

    Article  Google Scholar 

  11. Wang X, Jiang M, Zhou Z, Gou J, Hui D. 3D printing of polymer matrix composites: a review and prospective. Composites, Part B, Engineering, 2017, 110: 442–458

    Article  Google Scholar 

  12. Yap C Y, Chua C K, Dong Z L, Liu Z H, Zhang D Q, Loh L E, Sing S L. Review of selective laser melting: materials and applications. Applied Physics Reviews, 2015, 2(4): 041101

    Article  Google Scholar 

  13. Ikushima A J, Fujiwara T, Saito K. Silica glass: a material for photonics. Journal of Applied Physics, 2000, 88(3): 1201–1213

    Article  Google Scholar 

  14. Friend J, Tan H H, Spencer M J S, Morishita T, Bassett M R. Density functional theory calculations of phenol-modified monolayer silicon nanosheets. In: Proceedings of SPIE Micro/Nano Materials, Devices, and Systems. Melbourne: SPIE, 2013, 89230D

    Google Scholar 

  15. Billiet T, Gevaert E, De Schryver T, Cornelissen M, Dubruel P. The 3D printing of gelatin methacrylamide cell-laden tissue-engineered constructs with high cell viability. Biomaterials, 2014, 35(1): 49–62

    Article  Google Scholar 

  16. Elvira K S, Casadevall i Solvas X, Wootton R C, deMello A J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nature Chemistry, 2013, 5(11): 905–915

    Article  Google Scholar 

  17. Kotz F, Plewa K, Bauer W, Schneider N, Keller N, Nargang T, Helmer D, Sachsenheimer K, Schäfer M, Worgull M, Greiner C, Richter C, Rapp B E. Liquid glass: a facile soft replication method for structuring glass. Advanced Materials, 2016, 28(23): 4646–4650

    Article  Google Scholar 

  18. Kotz F, Risch P, Arnold K, Sevim S, Puigmartí-Luis J, Quick A, Thiel M, Hrynevich A, Dalton P D, Helmer D, Rapp B E. Fabrication of arbitrary three-dimensional suspended hollow microstructures in transparent fused silica glass. Nature Communications, 2019, 10(1): 1439

    Article  Google Scholar 

  19. Goh G D, Yap Y L, Tan H K J, Sing S L, Goh G L, Yeong W Y. Process-structure-properties in polymer additive manufacturing via material extrusion: a review. Critical Reviews in Solid State and Material Sciences, 2020, 45(2): 113–133

    Article  Google Scholar 

  20. Huang J, Chen Q, Jiang H, Zou B, Li L, Liu J, Yu H. A survey of design methods for material extrusion polymer 3D printing. Virtual and Physical Prototyping, 2020, 15(2): 148–162

    Article  Google Scholar 

  21. Kuznetsov V E, Solonin A N, Tavitov A G, Urzhumtsev O D, Vakulik A H. Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process. Rapid Prototyping Journal, 2018, 26: 107–121

    Article  Google Scholar 

  22. Ćwikła G, Grabowik C, Kalinowski K, Paprocka I, Ociepka P. The influence of printing parameters on selected mechanical properties of FDM/FFF 3D-printed parts. IOP Conference Series. Materials Science and Engineering, 2017, 227: 012033

    Article  Google Scholar 

  23. Wittbrodt B, Pearce J M. The effects of PLA color on material properties of 3-D printed components. Additive Manufacturing, 2015, 8: 110–116

    Article  Google Scholar 

  24. Thirunahary S, Ketham M M R, Akhil H, Mavoori N K. A critical review on of 3D printing materials and details of materials used in FDM. International Journal of Scientific Research in Science, Engineering and Technology, 2017, 3(2): 353–361

    Google Scholar 

  25. Polak R, Sedlacek F, Raz K. Determination of FDM printer settings with regard to geometrical accuracy. In: Proceedings of the 28th International DAAAM Symposium. 2017, 0561–0566

  26. Sood A K, Ohdar R K, Mahapatra S S. Parametric appraisal of mechanical property of fused deposition modelling processed parts. Materials & Design, 2010, 31(1): 287–295

    Article  Google Scholar 

  27. Popescu D, Zapciu A, Amza C, Baciu F, Marinescu R. FDM process parameters influence over the mechanical properties of polymer specimens: a review. Polymer Testing, 2018, 69: 157–166

    Article  Google Scholar 

  28. Choi Y H, Kim C M, Jeong H S, Youn J H. Influence of bed temperature on heat shrinkage shape error in FDM additive manufacturing of the ABS-engineering plastic. World Journal of Engineering and Technology, 2016, 4(3): 186–192

    Article  Google Scholar 

  29. Soares J B, Finamor J, Silva F P, Roldo L, Cândido L H. Analysis of the influence of polylactic acid (PLA) colour on FDM 3D printing temperature and part finishing. Rapid Prototyping Journal, 2018, 24(8): 1305–1316

    Article  Google Scholar 

  30. Klein J, Stern M, Franchin G, Kayser M, Inamura C, Dave S, Weaver J, Houk P, Colombo P, Yang M, Oxman N. Additive manufacturing of optically transparent glass. 3D Printing and Additive Manufacturing, 2015, 2(3): 92–105

    Article  Google Scholar 

  31. Baudet E, Ledemi Y, Larochelle P, Morency S, Messaddeq Y. 3D-printing of arsenic sulfide chalcogenide glasses. Optical Materials Express, 2019, 9(5): 2307

    Article  Google Scholar 

  32. Engineering Niomta. Progress has been made in research on 3D printing technology and equipment for glass at Ningbo Institute of Materials Technique and Engineering. 2015 (in Chinese)

  33. Garg A, Bhattacharya A, Batish A. On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Materials and Manufacturing Processes, 2016, 31(4): 522–529

    Article  Google Scholar 

  34. Li G. Effect of FDM rapid prototyping process parameter on step effect. Mechanical Engineering & Automation, 2017, 12(6): 131–135 (in Chinese)

    Google Scholar 

  35. Ceretti E, Ginestra P, Neto P I, Fiorentino A, Da Silva J V L. Multi-layered scaffolds production via fused deposition modeling (FDM) using an open source 3D printer: process parameters optimization for dimensional accuracy and design reproducibility. Procedia CIRP, 2017, 65: 13–18

    Article  Google Scholar 

  36. Kiendl J, Gao C. Controlling toughness and strength of FDM 3D-printed PLA components through the raster layup. Composites Part B, Engineering, 2020, 180: 107562

    Article  Google Scholar 

  37. Mohan N, Senthil P, Vinodh S, Jayanth N. A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual and Physical Prototyping, 2017, 12(1): 47–59

    Article  Google Scholar 

  38. Hambali R H, Cheong K M, Azizan N. Analysis of the influence of chemical treatment to the strength and surface roughness of FDM. IOP Conference Series. Materials Science and Engineering, 2017, 210: 012063

    Article  Google Scholar 

  39. Hong H, Seo Y B, Kim D Y, Lee J S, Lee Y L, Lee H, Ajiteru O, Sultan M T, Lee O J, Kin S H, Park C H. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials, 2018, 232: 119679

    Article  Google Scholar 

  40. Kim S H, Yeon Y K, Lee J M, Chao J R, Lee Y J, Seo Y B, Sultan M T, Lee O J, Lee J S, Yoon S I, Hong I S, Khang G, Lee S J, Yoo J J, Park C H. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nature Communications, 2018, 9(1): 1620

    Article  Google Scholar 

  41. Manapat J Z, Mangadlao J D, Tiu B D, Tritchler G C, Advincula R C. High-strength stereolithographic 3D printed nanocomposites: graphene oxide metastability. ACS Applied Materials & Interfaces, 2017, 9(11): 10085–10093

    Article  Google Scholar 

  42. Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang T M, Richter C, Helmer D, Rapp B E. Three-dimensional printing of transparent fused silica glass. Nature, 2017, 544(7650): 337–339

    Article  Google Scholar 

  43. Liu C, Qian B, Ni R, Liu X, Qiu J. 3D printing of multicolor luminescent glass. RSC Advances, 2018, 8(55): 31564–31567

    Article  Google Scholar 

  44. Sadeqi A, Rezaei Nejad H, Owyeung R E, Sonkusale S. Three dimensional printing of metamaterial embedded geometrical optics (MEGO). Microsystems & Nanoengineering, 2019, 5(1): 16

    Article  Google Scholar 

  45. Waheed S, Cabot J M, Macdonald N P, Lewis T, Guijt R M, Paull B, Breadmore M C. 3D printed microfluidic devices: enablers and barriers. Lab on a Chip, 2016, 16(11): 1993–2013

    Article  Google Scholar 

  46. Strano G, Hao L, Everson R M, Evans K E. A new approach to the design and optimisation of support structures in additive manufacturing. International Journal of Advanced Manufacturing Technology, 2012, 66(9–12): 1247–1254

    Google Scholar 

  47. Yu E A, Yeom J, Tutum C C, Vouga E, Miikkulainen R. Evolutionary decomposition for 3D printing. In: Proceedings of the Genetic and Evolutionary Computation Conference. Berlin: ACM Publication, 2017, 1272–1279

    Google Scholar 

  48. Liu C, Qian B, Liu X, Tong L, Qiu J. Additive manufacturing of silica glass using laser stereolithography with a top-down approach and fast debinding. RSC Advances, 2018, 8(29): 16344–16348

    Article  Google Scholar 

  49. Wu D, Zhao Z, Zhang Q, Qi H J, Fang D. Mechanics of shape distortion of DLP 3D printed structures during UV post-curing. Soft Matter, 2019, 15(30): 6151–6159

    Article  Google Scholar 

  50. Komissarenko D A, Sokolov P S, Evstigneeva A D, Shmeleva I A, Dosovitsky A E. Rheological and curing behavior of acrylate-based suspensions for the DLP 3D printing of complex zirconia parts. Materials (Basel), 2018, 11(12): 2350

    Article  Google Scholar 

  51. Moore D G, Barbera L, Masania K, Studart A R. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nature Materials, 2020, 19(2): 212–217

    Article  Google Scholar 

  52. Cooperstein I, Shukrun E, Press O, Kamyshny A, Magdassi S. Additive manufacturing of transparent silica glass from solutions. ACS Applied Materials & Interfaces, 2018, 10(22): 18879–18885

    Article  Google Scholar 

  53. Voet V S D, Strating T, Schnelting G H M, Dijkstra P, Tietema M, Xu J, Woortman A J J, Loos K, Jager J, Folkersma R. Biobased acrylate photocurable resin formulation for stereolithography 3D printing. ACS Omega, 2018, 3(2): 1403–1408

    Article  Google Scholar 

  54. Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I. Ceramic components manufacturing by selective laser sintering. Applied Surface Science, 2007, 254(4): 989–992

    Article  Google Scholar 

  55. Rao H, Giet S, Yang K, Wu X, Davies C H J. The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting. Materials & Design, 2016, 109: 334–346

    Article  Google Scholar 

  56. Rao J H, Zhang Y, Fang X, Chen Y, Wu X, Davies C H J. The origins for tensile properties of selective laser melted aluminium alloy A357. Additive Manufacturing, 2017, 17: 113–122

    Article  Google Scholar 

  57. Yadroitsev I, Bertrand P, Smurov I. Parametric analysis of the selective laser melting process. Applied Surface Science, 2007, 253 (19): 8064–8069

    Article  Google Scholar 

  58. Ahmed N. Direct metal fabrication in rapid prototyping: a review. Journal of Manufacturing Processes, 2019, 42: 167–191

    Article  Google Scholar 

  59. Klocke F, McClung A, Ader C. Direct laser sintering of borosilicate glass. In: Proceedings of the 15th Annual Symposium on Solid Freeform Fabrication. Austi: The University of Texas, 2004, 214–219

    Google Scholar 

  60. Rahmani R, Rosenberg M, Ivask A, Kollo L. Comparison of mechanical and antibacterial properties of TiO2/Ag ceramics and Ti6Al4V-TiO2/Ag composite materials using combined SLM-SPS techniques. Metals, 2019, 9(8): 874

    Article  Google Scholar 

  61. Tey C F, Tan X, Sing S L, Yeong W Y. Additive manufacturing of multiple materials by selective laser melting: Ti-alloy to stainless steel via a Cu-alloy interlayer. Additive Manufacturing, 2020, 31: 100970

    Article  Google Scholar 

  62. Kuo C N, Chua C K, Peng P C, Chen Y W, Sing S L, Huang S, Su Y L. Microstructure evolution and mechanical property response via 3D printing parameter development of Al-Sc alloy. Virtual and Physical Prototyping, 2020, 15(1): 120–129

    Article  Google Scholar 

  63. Luo J, Edward H P, Kinzel C. Additive manufacturing of glass. Journal of Manufacturing Science and Engineering, 2014, 136(6): 061024

    Article  Google Scholar 

  64. Luo J, Gilbert L J, Bristow D A, Landers R G, Goldstein J T, Urbas A M, Kinzel E C. Additive manufacturing of glass for optical applications. In: Proceedings of SPIE Laser 3D Manufacturing III. California: SPIE, 2016, 97380Y

    Google Scholar 

  65. Luo J, Luke J G, Qu C, Robert G L, Douglas A B, Edward C K. Additive manufacturing of optically transparent soda-lime glass using a filament-fed process. Journal of Manufacturing Science and Engineering, 2017, 139(6): 061006

    Article  Google Scholar 

  66. Ko S H, Pan H, Grigoropoulos C P, Luscombe C K, Fréchet J M J, Poulikakos D. All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles. Nanotechnology, 2007, 18 (34): 345202

    Article  Google Scholar 

  67. Park B K, Kim D, Jeong S, Moon J, Kim J S. Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films, 2007, 515(19): 7706–7711

    Article  Google Scholar 

  68. Nguyen D T, Meyers C, Yee T D, Dudukovic N A, Destino J F, Zhu C, Duoss E B, Baumann T F, Suratwala T, Smay J E, Dylla-Spears R. 3D-printed transparent glass. Advanced Materials, 2017, 29(26): 1701181

    Article  Google Scholar 

  69. Destino J F, Dudukovic N A, Johnson M A, Nguyen D T, Yee T D, Egan G C, Sawvel A M, Steele W A, Baumann T F, Duoss E B, Suratwala T, Dylla-Spears R. 3D printed optical quality silica and silica-titania glasses from sol-gel feedstocks. Advanced Materials Technologies, 2018, 3(6): 1700323

    Article  Google Scholar 

  70. Dudukovic N A, Wong L L, Nguyen D T, Destino J F, Yee T D, Ryerson F J, Suratwala T, Duoss E B, Dylla-Spears R. Predicting nanoparticle suspension viscoelasticity for multimaterial 3D printing of silica-titania glass. ACS Applied Nano Materials, 2018, 1(8): 4038–4044

    Article  Google Scholar 

  71. Sasan K, Lange A, Yee T D, Dudukovic N, Nguyen D T, Johnson M A, Herrera O D, Yoo J H, Sawvel A M, Ellis M E, Mah C M, Ryerson R, Wong L L, Suratwala T, Destino J F, Dylla-Spears R. Additive manufacturing of optical quality germania-silica glasses. ACS Applied Materials & Interfaces, 2020, 12(5): 6736–6741

    Article  Google Scholar 

  72. Li V C, Dunn C K, Zhang Z, Deng Y, Qi H J. Direct ink write (DIW) 3D printed cellulose nanocrystal aerogel structures. Scientific Reports, 2017, 7(1): 8018

    Article  Google Scholar 

  73. Yuk H, Zhao X. A new 3D printing strategy by harnessing deformation, instability, and fracture of viscoelastic inks. Advanced Materials, 2018, 30(6): 1704028

    Article  Google Scholar 

  74. Lowell D, George D, Lutkenhaus J, Tian C, Adewole M, Philipose U, Zhang H, Lin Y. Flexible holographic fabrication of 3D photonic crystal templates with polarization control through a 3D printed reflective optical element. Micromachines, 2016, 7(7): 128

    Article  Google Scholar 

  75. Jonušauskas L, Juodkazis S, Malinauskas M. Optical 3D printing: bridging the gaps in the mesoscale. Journal of Optics, 2018, 20(5): 053001

    Article  Google Scholar 

  76. Kotz F, Schneider N, Striegel A, Wolfschläger A, Keller N, Worgull M, Bauer W, Schild D, Milich M, Greiner C, Helmer D, Rapp B E. Glassomer-processing fused silica glass like a polymer. Advanced Materials, 2018, 30(22): 1707100

    Article  Google Scholar 

  77. Thiele S, Arzenbacher K, Gissibl T, Giessen H, Herkommer A M. 3D-printed eagle eye: compound microlens system for foveated imaging. Science Advances, 2017, 3(2): e1602655

    Article  Google Scholar 

  78. Cook K, Canning J, Leon-Saval S, Reid Z, Hossain M A, Comatti J E, Luo Y, Peng G D. Air-structured optical fiber drawn from a 3D-printed preform. Optics Letters, 2015, 40(17): 3966–3969

    Article  Google Scholar 

  79. Gissibl T, Thiele S, Herkommer A, Giessen H. Two-photon direct laser writing of ultracompact multi-lens objectives. Nature Photonics, 2016, 10(8): 554–560

    Article  Google Scholar 

  80. Bhattacharjee N, Urrios A, Kang S, Folch A. The upcoming 3D-printing revolution in microfluidics. Lab on a Chip, 2016, 16(10): 1720–1742

    Article  Google Scholar 

  81. Weisgrab G, Ovsianikov A, Costa P F. Functional 3D printing for microfluidic chips. Advanced Materials Technologies, 2019, 4(10): 1900275

    Article  Google Scholar 

  82. He Y, Wu Y, Fu J, Gao Q, Qiu J. Developments of 3D printing microfluidics and applications in chemistry and biology: a review. Electroanalysis, 2016, 28(8): 1658–1678

    Article  Google Scholar 

  83. Lee J M, Zhang M, Yeong W Y. Characterization and evaluation of 3D printed microfluidic chip for cell processing. Microfluidics and Nanofluidics, 2016, 20(1): 5

    Article  Google Scholar 

  84. Yazdi A, Popma A, Wong W, Nguyen T, Pan Y, Xu J. 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluidics and Nanofluidics, 2016, 20(3): 50

    Article  Google Scholar 

  85. Hinton T J, Hudson A, Pusch K, Lee A, Feinberg A W. 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomaterials Science & Engineering, 2016, 2(10): 1781–1786

    Article  Google Scholar 

  86. Trantidou T, Elani Y, Parsons E, Ces O. Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition. Microsystems & Nanoengineering, 2017, 3(1): 16091

    Article  Google Scholar 

  87. Lin Z J, Xu J, Song Y P, Li X L, Wang P, Chu W, Wang Z H, Cheng Y. Freeform microfluidic networks encapsulated in laser-printed 3D macroscale glass objects. Advanced Materials Technologies, 2020, 5(2): 1900989

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFB1107200), the National Natural Science Foundation of China (Grant No. 51772270), the Open Project Program of Wuhan National Laboratory for Optoelectronics (No. 2018-WNLOKF005), and State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianrong Qiu.

Additional information

Dao Zhang received his bachelor’s degree from Jinan University, China. He is now a master student at Zhejiang University, China. His main research areas include 3D printing glass, high-power LED lighting and their applications. E-mail: 21860125@zju.edu.cn

Xiaofeng Liu received his Ph.D. degree from Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, China, in 2010. He worked as a post-doc at Tokyo Institute of Technology (Japan) during 2010–2011, at Max Planck Institute for Colloids and Interfaces (Germany) during 2011–2013. He is now a professor in College of Optical Science and Engineering at Zhejiang University, China. His research interests cover non-linear optics, ultrafast laser, 2D material, and their applications. E-mail: xfliu@zju.edu.cn

Jianrong Qiu is a professor in College of Optical Science and Engineering at Zhejiang University, China. He received his Ph.D. degree from Okayama University (Japan) in 1992. He specializes in lasermatter interaction and optical materials. Prof. Qiu is the Chair Professor of Cheung Kong Scholars Program, fellow of the Optical Society of America (OSA), the American Ceramic Society (ACS), the International Glass Commission, and the Chinese Ceramics Society. He is also the vice Chairman of Photoelectronic Glasses Branch, Associate Editor (or International Advisory Board Member) of the Asian J Ceram Soc, Int J Appl Glass Sci, and J Non-Cryst Solids. E-mail: qjr@zju.edu.cn

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liu, X. & Qiu, J. 3D printing of glass by additive manufacturing techniques: a review. Front. Optoelectron. 14, 263–277 (2021). https://doi.org/10.1007/s12200-020-1009-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-020-1009-z

Keywords

Navigation