Skip to main content
Log in

Self-trapped excitons in two-dimensional perovskites

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

With strong electron-phonon coupling, the self-trapped excitons are usually formed in materials, which leads to the local lattice distortion and localized excitons. The self-trapping strongly depends on the dimensionality of the materials. In the three-dimensional case, there is a potential barrier for self-trapping, whereas no such barrier is present for quasi-one-dimensional systems. Two-dimensional (2D) systems are marginal cases with a much lower potential barrier or nonexistent potential barrier for the self-trapping, leading to the easier formation of self-trapped states. Self-trapped excitons emission exhibits a broadband emission with a large Stokes shift below the bandgap. 2D perovskites are a class of layered structure material with unique optical properties and would find potential promising optoelectronic. In particular, self-trapped excitons are present in 2D perovskites and can significantly influence the optical and electrical properties of 2D perovskites due to the soft characteristic and strong electron-phonon interaction. Here, we summarized the luminescence characteristics, origins, and characterizations of self-trapped excitons in 2D perovskites and finally gave an introduction to their applications in optoelectronics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brenner T M, Egger D A, Kronik L, Hodes G, Cahen D. Hybrid organic-inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nature Reviews Materials, 2016, 1(1): 15007

    Google Scholar 

  2. Li W, Wang Z, Deschler F, Gao S, Friend R H, Cheetham A K. Chemically diverse and multifunctional hybrid organic-inorganic perovskites. Nature Reviews Materials, 2017, 2(3): 16099

    Google Scholar 

  3. National Renewable Energy Laboratory. NREL efficiency chart. 2020

  4. Wang Z, Shi Z, Li T, Chen Y, Huang W. Stability of perovskite solar cells: a prospective on the substitution of the A cation and X anion. Angewandte Chemie International Edition, 2017, 56(5): 1190–1212

    Google Scholar 

  5. Dou L. Emerging two-dimensional halide perovskite nanomaterials. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(43): 11165–11173

    Google Scholar 

  6. Etgar L. The merit of perovskite’s dimensionality; can this replace the 3D halide perovskite? Energy & Environmental Science, 2018, 11 (2): 234–242

    Google Scholar 

  7. Grancini G, Nazeeruddin M K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nature Reviews Materials, 2019, 4(1): 4–22

    Google Scholar 

  8. Li J, Wang J, Zhang Y, Wang H, Lin G, Xiong X, Zhou W, Luo H, Li D. Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Materials, 2018, 5(2): 021001

    Google Scholar 

  9. Fang C, Wang H, Shen Z, Shen H, Wang S, Ma J, Wang J, Luo H, Li D. High-performance photodetectors based on lead-free 2D Ruddlesden-Popper perovskite/MoS2 heterostructures. ACS Applied Materials & Interfaces, 2019, 11(8): 8419–8427

    Google Scholar 

  10. Ma J, Fang C, Chen C, Jin L, Wang J, Wang S, Tang J, Li D. Chiral 2D perovskites with a high degree of circularly polarized photoluminescence. ACS Nano, 2019, 13(3): 3659–3665

    Google Scholar 

  11. Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015, 137(24): 7843–7850

    Google Scholar 

  12. Smith M D, Connor B A, Karunadasa H I. Tuning the luminescence of layered halide perovskites. Chemical Reviews, 2019, 119(5): 3104–3139

    Google Scholar 

  13. Gao Y, Shi E, Deng S, Shiring S B, Snaider J M, Liang C, Yuan B, Song R, Janke S M, Liebman-Peláez A, Yoo P, Zeller M, Boudouris B W, Liao P, Zhu C, Blum V, Yu Y, Savoie B M, Huang L, Dou L. Molecular engineering of organic-inorganic hybrid perovskites quantum wells. Nature Chemistry, 2019, 11(12): 1151–1157

    Google Scholar 

  14. Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521

    Google Scholar 

  15. Straus D B, Kagan C R. Electrons, excitons, and phonons in two-dimensional hybrid perovskites: connecting structural, optical, and electronic properties. Journal of Physical Chemistry Letters, 2018, 9(6): 1434–1447

    Google Scholar 

  16. Blancon J C, Tsai H, Nie W, Stoumpos C C, Pedesseau L, Katan C, Kepenekian M, Soe C M, Appavoo K, Sfeir M Y, Tretiak S, Ajayan P M, Kanatzidis M G, Even J, Crochet J J, Mohite A D. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science, 2017, 355(6331): 1288–1292

    Google Scholar 

  17. Chen Y, Sun Y, Peng J, Tang J, Zheng K, Liang Z. 2D Ruddlesden-Popper perovskites for optoelectronics. Advanced Materials, 2018, 30(2): 1703487

    Google Scholar 

  18. Wang J, Su R, Xing J, Bao D, Diederichs C, Liu S, Liew T C H, Chen Z, Xiong Q. Room temperature coherently coupled excitonpolaritons in two-dimensional organic-inorganic perovskite. ACS Nano, 2018, 12(8): 8382–8389

    Google Scholar 

  19. Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H. Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016, 11(10): 872–877

    Google Scholar 

  20. Ha S T, Shen C, Zhang J, Xiong Q. Laser cooling of organic-inorganic lead halide perovskites. Nature Photonics, 2016, 10(2): 115–121

    Google Scholar 

  21. Straus D B, Hurtado Parra S, Iotov N, Gebhardt J, Rappe A M, Subotnik J E, Kikkawa J M, Kagan C R. Direct observation of electron-phonon coupling and slow vibrational relaxation in organic-inorganic hybrid perovskites. Journal of the American Chemical Society, 2016, 138(42): 13798–13801

    Google Scholar 

  22. Li J, Wang J, Ma J, Shen H, Li L, Duan X, Li D. Self-trapped state enabled filterless narrowband photodetections in 2D layered perovskite single crystals. Nature Communications, 2019, 10(1): 806

    Google Scholar 

  23. Wu X, Trinh M T, Niesner D, Zhu H, Norman Z, Owen J S, Yaffe O, Kudisch B J, Zhu X Y. Trap states in lead iodide perovskites. Journal of the American Chemical Society, 2015, 137(5): 2089–2096

    Google Scholar 

  24. Cortecchia D, Neutzner S, Srimath Kandada A R, Mosconi E, Meggiolaro D, De Angelis F, Soci C, Petrozza A. Broadband emission in two-dimensional hybrid perovskites: the role of structural deformation. Journal of the American Chemical Society, 2017, 139(1): 39–42

    Google Scholar 

  25. Dohner E R, Jaffe A, Bradshaw L R, Karunadasa H I. Intrinsic white-light emission from layered hybrid perovskites. Journal of the American Chemical Society, 2014, 136(38): 13154–13157

    Google Scholar 

  26. Mao L, Guo P, Kepenekian M, Hadar I, Katan C, Even J, Schaller R D, Stoumpos C C, Kanatzidis M G. Structural diversity in white-light-emitting hybrid lead bromide perovskites. Journal of the American Chemical Society, 2018, 140(40): 13078–13088

    Google Scholar 

  27. Mao L, Wu Y, Stoumpos C C, Wasielewski M R, Kanatzidis M G. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. Journal of the American Chemical Society, 2017, 139(14): 5210–5215

    Google Scholar 

  28. Williams R T, Song K S. The self-trapped exciton. Journal of Physics and Chemistry of Solids, 1990, 51(7): 679–716

    Google Scholar 

  29. Smith M D, Karunadasa H I. White-light emission from layered halide perovskites. Accounts of Chemical Research, 2018, 51(3): 619–627

    Google Scholar 

  30. Smith M D, Jaffe A, Dohner E R, Lindenberg A M, Karunadasa H I. Structural origins of broadband emission from layered Pb-Br hybrid perovskites. Chemical Science (Cambridge), 2017, 8(6): 4497–4504

    Google Scholar 

  31. Stoumpos C C, Cao D H, Clark D J, Young J, Rondinelli J M, Jang J I, Hupp J T, Kanatzidis M G. Ruddlesden-Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chemistry of Materials, 2016, 28(8): 2852–2867

    Google Scholar 

  32. Wang S, Ma J, Li W, Wang J, Wang H, Shen H, Li J, Wang J, Luo H, Li D. Temperature-dependent band gap in two-dimensional perovskites: thermal expansion interaction and electron-phonon interaction. Journal of Physical Chemistry Letters, 2019, 10(10): 2546–2553

    Google Scholar 

  33. Blancon J C, Stier A V, Tsai H, Nie W, Stoumpos C C, Traoré B, Pedesseau L, Kepenekian M, Katsutani F, Noe G T, Kono J, Tretiak S, Crooker S A, Katan C, Kanatzidis M G, Crochet J J, Even J, Mohite A D. Scaling law for excitons in 2D perovskite quantum wells. Nature Communications, 2018, 9(1): 2254

    Google Scholar 

  34. Li J, Ma J, Cheng X, Liu Z, Chen Y, Li D. Anisotropy of excitons in two-dimensional perovskite crystals. ACS Nano, 2020, 14(2): 2156–2161

    Google Scholar 

  35. Yu J, Kong J, Hao W, Guo X, He H, Leow W R, Liu Z, Cai P, Qian G, Li S, Chen X, Chen X. Broadband extrinsic self-trapped exciton emission in Sn-doped 2D lead-halide perovskites. Advanced Materials, 2019, 31(7): e1806385

    Google Scholar 

  36. Yangui A, Garrot D, Lauret J S, Lusson A, Bouchez G, Deleporte E, Pillet S, Bendeif E E, Castro M, Triki S, Abid Y, Boukheddaden K. Optical investigation of broadband white-light emission in self-assembled organic-inorganic perovskite (C6H11NH3)2PbBr4. Journal of Physical Chemistry C, 2015, 119(41): 23638–23647

    Google Scholar 

  37. Zhou C, Lin H, Shi H, Tian Y, Pak C, Shatruk M, Zhou Y, Djurovich P, Du M H, Ma B. A zero-dimensional organic seesaw-shaped tin bromide with highly efficient strongly Stokes-shifted deep-red emission. Angewandte Chemie International Edition, 2018, 57(4): 1021–1024

    Google Scholar 

  38. Zhou G, Su B, Huang J, Zhang Q, Xia Z. Broad-band emission in metal halide perovskites: mechanism, materials, and applications. Materials Science and Engineering R Reports, 2020, 141(1): 100548

    Google Scholar 

  39. Yuan Z, Zhou C, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B. One-dimensional organic lead halide perovskites with efficient bluish white-light emission. Nature Communications, 2017, 8(1): 14051

    Google Scholar 

  40. Li X, Guo P, Kepenekian M, Hadar I, Katan C, Even J, Stoumpos C C, Schaller R D, Kanatzidis M G. Small cyclic diammonium cation templated (110)-oriented 2D halide (X = I, Br, Cl) perovskites with white-light emission. Chemistry of Materials, 2019, 31(9): 3582–3590

    Google Scholar 

  41. Mao L, Wu Y, Stoumpos C C, Traore B, Katan C, Even J, Wasielewski M R, Kanatzidis M G. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10xClx. Journal of the American Chemical Society, 2017, 139(34): 11956–11963

    Google Scholar 

  42. Gautier R, Paris M, Massuyeau F. Exciton self-trapping in hybrid lead halides: role of halogen. Journal of the American Chemical Society, 2019, 141(32): 12619–12623

    Google Scholar 

  43. Cortecchia D, Yin J, Bruno A, Lo S Z A, Gurzadyan G G, Mhaisalkar S, Brédas J L, Soci C. Polaron self-localization in white-light emitting hybrid perovskites. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2017, 5(11): 2771–2780

    Google Scholar 

  44. Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature, 2018, 563(7732): 541–545

    Google Scholar 

  45. Li S, Luo J, Liu J, Tang J. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. Journal of Physical Chemistry Letters, 2019, 10(8): 1999–2007

    Google Scholar 

  46. Li L, Jin L, Zhou Y, Li J, Ma J, Wang S, Li W, Li D. Filterless polarization-sensitive 2D perovskite narrowband photodetectors. Advanced Optical Materials, 2019, 7(23): 1900988

    Google Scholar 

Download references

Acknowledgements

D. L. acknowledges the support from the National Basic Research Program of China (No. 2018YFA0704403), the National Natural Science Foundation of China (NSFC) (Grant No. 61674060), and Innovation Fund of Wuhan National Laboratory for Optoelectronics (WNLO).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haizhen Wang or Dehui Li.

Additional information

Junze Li obtained his Ph.D. degree in Physical Electronics from Huazhong University of Science and Technology, China in June 2020. In July 2020, he joined School of Optical and Electronic Information, Huazhong University of Science and Technology, China as a postdoctoral. His current research interests focus on optoelectronic devices based on 2D perovskite.

Haizhen Wang is a scientist in School of Optical and Electronic Information at Huazhong University of Science and Technology in China. She received her Ph.D. degree from New Mexico State University, USA. Her research interest mainly focuses on the design of transition metal-based bifunctional electrocatalysts and anode materials for lithium ion batteries as well as two-dimensional halide perovskites.

Dehui Li is a professor in School of Optical and Electronic Information at Huazhong University of Science and Technology in China. He obtained his Ph.D. degree from Nanyang Technological University, Singapore in 2013 and was a postdoctoral fellow with Prof. Xiangfeng Duan (2013–2016) at University of California, Los Angeles, USA. His current research interests include low-dimensional halide perovskites, two-dimensional layered materials and surface plasmons in optoelectronics.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, H. & Li, D. Self-trapped excitons in two-dimensional perovskites. Front. Optoelectron. 13, 225–234 (2020). https://doi.org/10.1007/s12200-020-1051-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-020-1051-x

Keywords

Navigation