Skip to main content
Log in

Nanoimprint lithography for high-throughput fabrication of metasurfaces

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Metasurfaces are composed of periodic sub-wavelength nanostructures and exhibit optical properties that are not found in nature. They have been widely investigated for optical applications such as holograms, wavefront shaping, and structural color printing, however, electron-beam lithography is not suitable to produce large-area metasurfaces because of the high fabrication cost and low productivity. Although alternative optical technologies, such as holographic lithography and plasmonic lithography, can overcome these drawbacks, such methods are still constrained by the optical diffraction limit. To break through this fundamental problem, mechanical nanopatterning processes have been actively studied in many fields, with nanoimprint lithography (NIL) coming to the forefront. Since NIL replicates the nanopattern of the mold regardless of the diffraction limit, NIL can achieve sufficiently high productivity and patterning resolution, giving rise to an explosive development in the fabrication of metasurfaces. In this review, we focus on various NIL technologies for the manufacturing of metasurfaces. First, we briefly describe conventional NIL and then present various NIL methods for the scalable fabrication of metasurfaces. We also discuss recent applications of NIL in the realization of metasurfaces. Finally, we conclude with an outlook on each method and suggest perspectives for future research on the high-throughput fabrication of active metasurfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lemoult F, Kaina N, Fink M, Lerosey G. Wave propagation control at the deep subwavelength scale in metamaterials. Nature Physics, 2013, 9(11): 55–60

    Article  Google Scholar 

  2. Lee C W, Choi H J, Jeong H. Tunable metasurfaces for visible and SWIR applications. Nano Convergence, 2020, 7(1): 3

    Article  Google Scholar 

  3. Chen Y, Ai B, Wong Z J. Soft optical metamaterials. Nano Convergence, 2020, 7(1): 18

    Article  Google Scholar 

  4. Lawrence M, Barton D R 3rd, Dixon J, Song J H, van de Groep J, Brongersma M L, Dionne J A. High quality factor phase gradient metasurfaces. Nature Nanotechnology, 2020, 15(11): 956–961

    Article  Google Scholar 

  5. Yoon G, Lee D, Nam K T, Rho J. Geometric metasurface enabling polarization independent beam splitting. Scientific Reports, 2018, 8(1): 9468

    Article  Google Scholar 

  6. Wu P C, Pala R A, Kafaie Shirmanesh G, Cheng W H, Sokhoyan R, Grajower M, Alam M Z, Lee D, Atwater H A. Dynamic beam steering with all-dielectric electro-optic III–V multiple-quantum-well metasurfaces. Nature Communications, 2019, 10(1): 3654

    Article  Google Scholar 

  7. Wong Z J, Wang Y, O’Brien K, Rho J, Yin X B, Zhang S, Fang N, Yen T J, Zhang X. Optical and acoustic metamaterials: Superlens, negative refractive index and invisibility cloak. Journal of Optics, 2017, 19(8): 084007

    Article  Google Scholar 

  8. Bang S, So S, Rho J. Realization of broadband negative refraction in visible range using vertically stacked hyperbolic metamaterials. Scientific Reports, 2019, 9(1): 14093

    Article  Google Scholar 

  9. Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150

    Article  Google Scholar 

  10. Lee D, Yang Y, Yoon G, Kim M, Rho J. Resolution enhancement of fluorescence microscopy using encoded patterns from all-dielectric metasurfaces. Applied Physics Letters, 2019, 115(10): 101102

    Article  Google Scholar 

  11. Lee D, Kim M, Kim J, Hong H, Badloe T, Kim D S, Rho J. All-dielectric metasurface imaging platform applicable to laser scanning microscopy with enhanced axial resolution and wavelength selection. Optical Materials Express, 2019, 9(8): 3248–3259

    Article  Google Scholar 

  12. Kim M, Rho J. Metamaterials and imaging. Nano Convergence, 2015, 2(1): 22

    Article  Google Scholar 

  13. Byun M, Lee D, Kim M, Kim Y, Kim K, Ok J G, Rho J, Lee H. Demonstration of nanoimprinted hyperlens array for high-throughput sub-diffraction imaging. Scientific Reports, 2017, 7 (1): 46314

    Article  Google Scholar 

  14. Lee D, Kim Y D, Kim M, So S, Choi H J, Mun J, Nguyen D M, Badloe T, Ok J G, Kim K, Lee H, Rho J. Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photonics, 2018, 5(7): 2549–2554

    Article  Google Scholar 

  15. Jang J, Badloe T, Yang Y, Lee T, Mun J, Rho J. Spectral modulation through the hybridization of Mie-scatterers and quasi-guided mode resonances: realizing full and gradients of structural color. ACS Nano, 2020, 14(11): 15317–15326

    Article  Google Scholar 

  16. Mudachathi R, Tanaka T. Up scalable full colour plasmonic pixels with controllable hue, brightness and saturation. Scientific Reports, 2017, 7(1): 1199

    Article  Google Scholar 

  17. Lee Y, Park M K, Kim S, Shin J H, Moon C, Hwang J Y, Choi J C, Park H, Kim H R, Jang J E. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator. ACS Photonics, 2017, 4(8): 1954–1966

    Article  Google Scholar 

  18. Lee D, Gwak J, Badloe T, Palomba S, Rho J. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Advances, 2020, 2(2): 605–625

    Article  Google Scholar 

  19. Lee T, Jang J, Jeong H, Rho J. Plasmonic- and dielectric-based structural coloring: from fundamentals to practical applications. Nano Convergence, 2018, 5(1): 1

    Article  Google Scholar 

  20. Kim M, Kim I, Jang J, Lee D, Nam K T, Rho J. Active color control in a metasurface by polarization rotation. Applied Sciences (Basel, Switzerland), 2018, 8(6): 982

    Google Scholar 

  21. Yoon G, Lee D, Nam K T, Rho J. “Crypto-display” in dual-mode metasurfaces by simultaneous control of phase and spectral responses. ACS Nano, 2018, 12(7): 6421–6428

    Article  Google Scholar 

  22. Jang J, Kang K, Raeis-Hosseini N, Ismukhanova A, Jeong H, Jung C, Kim B, Lee J Y, Park I, Rho J. Self-powered humidity sensor using chitosan-based plasmonic metal-hydrogel-metal filters. Advanced Optical Materials, 2020, 8(9): 1901932

    Article  Google Scholar 

  23. Aoni R A, Rahmani M, Xu L, Zangeneh Kamali K, Komar A, Yan J, Neshev D, Miroshnichenko A E. High-efficiency visible light manipulation using dielectric metasurfaces. Scientific Reports, 2019, 9(1): 6510

    Article  Google Scholar 

  24. Jang J, Badloe T, Sim Y C, Yang Y, Mun J, Lee T, Cho Y H, Rho J. Full and gradient structural colouration by lattice amplified gallium nitride Mie-resonators. Nanoscale, 2020, 12(41): 21392–21400

    Article  Google Scholar 

  25. Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 2020, 32(50): e2004664

    Article  Google Scholar 

  26. Kim I, Yoon G, Jang J, Genevet P, Nam K T, Rho J. Outfitting next generation displays with optical metasurfaces. ACS Photonics, 2018, 5(10): 3876–3895

    Article  Google Scholar 

  27. Li Z, Kim I, Zhang L, Mehmood M Q, Anwar M S, Saleem M, Lee D, Nam K T, Zhang S, Luk’yanchuk B, Wang Y, Zheng G, Rho J, Qiu C W. Dielectric meta-holograms enabled with dual magnetic resonances in visible light. ACS Nano, 2017, 11(9): 9382–9389

    Article  Google Scholar 

  28. Lee G Y, Yoon G, Lee S Y, Yun H, Cho J, Lee K, Kim H, Rho J, Lee B. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 2018, 10(9): 4237–4245

    Article  Google Scholar 

  29. Ansari M A, Kim I, Lee D, Waseem M H, Zubair M, Mahmood N, Badloe T, Yerci S, Tauqeer T, Mehmood M Q, Rho J. A spinencoded all-dielectric metahologram for visible light. Laser & Photonics Reviews, 2019, 13(5): 1900065

    Article  Google Scholar 

  30. Yoon G, Kim J, Mun J, Lee D, Nam K T, Rho J. Wavelength-decoupled geometric metasurfaces by arbitrary dispersion control. Communications on Physics, 2019, 2(1): 129

    Article  Google Scholar 

  31. Ansari M A, Kim I, Rukhlenko I D, Zubair M, Yerci S, Tauqeer T, Mehmood M Q, Rho J. Engineering spin and antiferromagnetic resonances to realize an efficient direction-multiplexed visible meta-hologram. Nanoscale Horizons, 2020, 5(1): 57–64

    Article  Google Scholar 

  32. Yoon G, Lee D, Nam K T, Rho J. Pragmatic metasurface hologram at visible wavelength: the balance between diffraction efficiency and fabrication compatibility. ACS Photonics, 2018, 5(5): 1643–1647

    Article  Google Scholar 

  33. Ren H, Fang X, Jang J, Bürger J, Rho J, Maier S A. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nature Nanotechnology, 2020, 15(11): 948–955

    Article  Google Scholar 

  34. Rana A S, Mehmood M Q, Jeong H, Kim I, Rho J. Tungsten-based ultrathin absorber for visible regime. Scientific Reports, 2018, 8(1): 2443

    Article  Google Scholar 

  35. Barho F B, Gonzalez-Posada F, Cerutti L, Taliercio T. Heavily doped semiconductor metamaterials for mid-infrared multispectral perfect absorption and thermal emission. Advanced Optical Materials, 2020, 8(6): 1901502

    Article  Google Scholar 

  36. Yoon G, So S, Kim M, Mun J, Ma R, Rho J. Electrically tunable metasurface perfect absorber for infrared frequencies. Nano Convergence, 2017, 4(1): 36

    Article  Google Scholar 

  37. Nguyen D M, Lee D, Rho J. Control of light absorbance using plasmonic grating based perfect absorber at visible and near-infrared wavelengths. Scientific Reports, 2017, 7(1): 2611

    Article  Google Scholar 

  38. Badloe T, Mun J, Rho J. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. Journal of Nanomaterials, 2017, 2017(1): 2361042

    Google Scholar 

  39. Badloe T, Kim I, Rho J. Moth-eye shaped on-demand broadband and switchable perfect absorbers based on vanadium dioxide. Scientific Reports, 2020, 10(1): 4522

    Article  Google Scholar 

  40. Badloe T, Kim I, Rho J. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning. Physical Chemistry Chemical Physics, 2020, 22(4): 2337–2342

    Article  Google Scholar 

  41. Kim I, So S, Rana A S, Mehmood M Q, Rho J. Thermally robust ring-shaped chromium perfect absorber of visible light. Nanophotonics, 2018, 7(11): 1827–1833

    Article  Google Scholar 

  42. Sajedian I, Badloe T, Lee H, Rho J. Deep Q-network to produce polarization-independent perfect solar absorbers: a statistical report. Nano Convergence, 2020, 7(1): 26

    Article  Google Scholar 

  43. Yoon G, Jang J, Mun J, Nam K T, Rho J. Metasurface zone plate for light manipulation in vectorial regime. Communications on Physics, 2019, 2(1): 156

    Article  Google Scholar 

  44. Yin X, Ye Z, Rho J, Wang Y, Zhang X. Photonic spin Hall effect at metasurfaces. Science, 2013, 339(6126): 1405–1407

    Article  Google Scholar 

  45. Wang Y H, Jin R C, Li J Q, Zhong F, Liu H, Kim I, Jo Y, Rho J, Dong Z G. Photonic spin hall effect by the spin-orbit interaction in a metasurface with elliptical nano-structures. Applied Physics Letters, 2017, 110(10): 101908

    Article  Google Scholar 

  46. Wang Y H, Kim I, Jin R C, Jeong H, Li J Q, Dong Z G, Rho J. Experimental verification of asymmetric transmission in continuous omega-shaped metamaterials. RSC Advances, 2018, 8(67): 38556–38561

    Article  Google Scholar 

  47. Hong J, Kim S J, Kim I, Yun H, Mun S E, Rho J, Lee B. Plasmonic metasurface cavity for simultaneous enhancement of optical electric and magnetic fields in deep subwavelength volume. Optics Express, 2018, 26(10): 13340–13348

    Article  Google Scholar 

  48. Kim I, So S, Mun J, Lee K H, Lee J H, Lee T, Rho J. Optical characterizations and thermal analyses of HfO2/SiO2 multilayered diffraction gratings for high-power continuous wave laser. Journal of Physics: Photonics, 2020, 2(2): 025004

    Google Scholar 

  49. Mahmood N, Kim I, Mehmood M Q, Jeong H, Akbar A, Lee D, Saleem M, Zubair M, Anwar M S, Tahir F A, Rho J. Polarisation insensitive multifunctional metasurfaces based on all-dielectric nanowaveguides. Nanoscale, 2018, 10(38): 18323–18330

    Article  Google Scholar 

  50. Mahmood N, Jeong H, Kim I, Mehmood M Q, Zubair M, Akbar A, Saleem M, Anwar M S, Tahir F A, Rho J. Twisted non-diffracting beams through all dielectric meta-axicons. Nanoscale, 2019, 11 (43): 20571–20578

    Article  Google Scholar 

  51. Li Z, Dai Q, Mehmood M Q, Hu G, Yanchuk B L, Tao J, Hao C, Kim I, Jeong H, Zheng G, Yu S, Alù A, Rho J, Qiu C W. Full-space cloud of random points with a scrambling metasurface. Light, Science & Applications, 2018, 7(1): 63

    Article  Google Scholar 

  52. Yoon G, Lee D, Rho J. Demonstration of equal-intensity beam generation by dielectric metasurfaces. Journal of Visualized Experiments, 2019, 148(148): e59066

    Google Scholar 

  53. Lee H E, Ahn H Y, Mun J, Lee Y Y, Kim M, Cho N H, Chang K, Kim W S, Rho J, Nam K T. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature, 2018, 556 (7701): 360–365

    Article  Google Scholar 

  54. Raeis-Hosseini N, Rho J. Dual-functional nanoscale devices using phase-change materials: a reconfigurable perfect absorber with nonvolatile resistance-change memory characteristics. Applied Sciences (Basel, Switzerland), 2019, 9(3): 564

    Google Scholar 

  55. Raeis-Hosseini N, Rho J. Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices. Materials (Basel), 2017, 10(9): 1046

    Article  Google Scholar 

  56. Yoon G, Kim I, So S, Mun J, Kim M, Rho J. Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Scientific Reports, 2017, 7(1): 6668

    Article  Google Scholar 

  57. Seo I C, Woo B H, An S C, Lee E, Jeong H Y, Lim Y, Jun Y C. Electron-beam-induced nanopatterning of J-aggregate thin films for excitonic and photonic response control. Advanced Optical Materials, 2018, 6(20): 1800583

    Article  Google Scholar 

  58. Jung C, Yang Y, Jang J, Badloe T, Lee T, Mun J, Moon S W, Rho J. Near-zero reflection of all-dielectric structural coloration enabling polarization-sensitive optical encryption with enhanced switchability. Nanophotonics, 2020, 10(2): 919–926

    Article  Google Scholar 

  59. Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S, Liu Z. Optical edge detection based on high-efficiency dielectric metasurface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(23): 11137–11140

    Article  Google Scholar 

  60. Jeon T, Kim D H, Park S G. Holographic fabrication of 3D nanostructures. Advanced Materials Interfaces, 2018, 5(18): 1800330

    Article  Google Scholar 

  61. Oh Y, Lim J W, Kim J G, Wang H, Kang B H, Park Y W, Kim H, Jang Y J, Kim J, Kim D H, Ju B K. Plasmonic periodic nanodot arrays via laser interference lithography for organic photovoltaic cells with > 10% efficiency. ACS Nano, 2016, 10(11): 10143–10151

    Article  Google Scholar 

  62. Bagheri S, Strohfeldt N, Sterl F, Berrier A, Tittl A, Giessen H. Large-area low-cost plasmonic perfect absorber chemical sensor fabricated by laser interference lithography. ACS Sensors, 2016, 1 (9): 1148–1154

    Article  Google Scholar 

  63. Do Y S. A highly reproducible fabrication process for large-area plasmonic filters for optical applications. IEEE Access: Practical Innovations, Open Solutions, 2018, 6(1): 68961–68967

    Article  Google Scholar 

  64. Song M, Li X, Pu M, Guo Y, Liu K, Yu H, Ma X, Luo X. Color display and encryption with a plasmonic polarizing metamirror. Nanophotonics, 2018, 7(1): 323–331

    Article  Google Scholar 

  65. Gan Z, Cai J, Liang C, Chen L, Min S, Cheng X, Cui D, Li W D. Patterning of high-aspect-ratio nanogratings using phase-locked two-beam fiber-optic interference lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2019, 37(6): 060601

    Google Scholar 

  66. Liang G, Wang C, Zhao Z, Wang Y, Yao N, Gao P, Luo Y, Gao G, Zhao Q, Luo X. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography. Advanced Optical Materials, 2015, 3(9): 1248–1256

    Article  Google Scholar 

  67. Liu H C, Kong W J, Zhu Q G, Zheng Y, Shen K S, Zhang J, Lu H. Plasmonic interference lithography by coupling the bulk plasmon polariton mode and the waveguide mode. Journal of Physics D, Applied Physics, 2020, 53(13): 135103

    Article  Google Scholar 

  68. Gao P, Pu M, Ma X, Li X, Guo Y, Wang C, Zhao Z, Luo X. Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm. Nanoscale, 2020, 12(4): 2415–2421

    Article  Google Scholar 

  69. Luo J, Zeng B, Wang C, Gao P, Liu K, Pu M, Jin J, Zhao Z, Li X, Yu H, Luo X. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography. Nanoscale, 2015, 7(44): 18805–18812

    Article  Google Scholar 

  70. Wang C, Zhang W, Zhao Z, Wang Y, Gao P, Luo Y, Luo X. Plasmonic structures, materials and lenses for optical lithography beyond the diffraction limit: A review. Micromachines, 2016, 7(7): 118

    Article  Google Scholar 

  71. Kim S K. Impact of plasmonic parameters on 7-nm patterning in plasmonic computational lithography. Journal of Nanoscience and Nanotechnology, 2018, 18(10): 7124–7127

    Article  Google Scholar 

  72. Hong F, Blaikie R. Plasmonic lithography: recent progress. Advanced Optical Materials, 2019, 7(14): 1801653

    Article  Google Scholar 

  73. Kim I, Mun J, Baek K M, Kim M, Hao C, Qiu C W, Jung Y S, Rho J. Cascade domino lithography for extreme photon squeezing. Materials Today, 2020, 39(1): 89–97

    Article  Google Scholar 

  74. Kim I, Mun J, Hwang W, Yang Y, Rho J. Capillary-force-induced collapse lithography for controlled plasmonic nanogap structures. Microsystems & Nanoengineering, 2020, 6(1): 65

    Article  Google Scholar 

  75. Nam V B, Giang T T, Koo S, Rho J, Lee D. Laser digital patterning of conductive electrodes using metal oxide nanomaterials. Nano Convergence, 2020, 7(1): 23

    Article  Google Scholar 

  76. Chou S Y, Krauss P R, Renstrom P J. Nanoimprint lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1996, 14(6): 4129–4133

    Article  Google Scholar 

  77. Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution. Science, 1996, 272(5258): 85–87

    Article  Google Scholar 

  78. Chou S Y. Sub-10 nm imprint lithography and applications. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1997, 15(6): 2897–2904

    Article  Google Scholar 

  79. Haisma J, Verheijen M, van den Heuvel K, van den Berg J. Mold-assisted nanolithography: a process for reliable pattern replication. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1996, 14(6): 4124–4128

    Article  Google Scholar 

  80. Austin M D, Ge H, Wu W, Li M, Yu Z, Wasserman D, Lyon S A, Chou S Y. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 2004, 84 (26): 5299–5301

    Article  Google Scholar 

  81. Plachetka U, Bender M, Fuchs A, Vratzov B, Glinsner T, Lindner F, Kurz H. Wafer scale patterning by soft UV-nanoimprint lithography. Microelectronic Engineering, 2004, 73–74(1): 167–171

    Article  Google Scholar 

  82. Sreenivasan S V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits. Microsystems & Nanoengineering, 2017, 3(1): 17075

    Article  Google Scholar 

  83. Qiao W, Huang W, Liu Y, Li X, Chen L S, Tang J X. Toward scalable flexible nanomanufacturing for photonic structures and devices. Advanced Materials, 2016, 28(47): 10353–10380

    Article  Google Scholar 

  84. Traub M C, Longsine W, Truskett V N. Advances in nanoimprint lithography. Annual Review of Chemical and Biomolecular Engineering, 2016, 7(1): 583–604

    Article  Google Scholar 

  85. Kim M, Lee D, Kim T H, Yang Y, Park H J, Rho J. Observation of enhanced optical spin hall effect in a vertical hyperbolic metamaterial. ACS Photonics, 2019, 6(10): 2530–2536

    Article  Google Scholar 

  86. Atighilorestani M, Jiang H, Kaminska B. Electrochromic-polymer-based switchable plasmonic color devices using surface-relief nanostructure pixels. Advanced Optical Materials, 2018, 6(23): 1801179

    Article  Google Scholar 

  87. Lee D, Han S Y, Jeong Y, Nguyen D M, Yoon G, Mun J, Chae J, Lee J H, Ok J G, Jung G Y, Park H J, Kim K, Rho J. Polarization-sensitive tunable absorber in visible and near-infrared regimes. Scientific Reports, 2018, 8(1): 12393

    Article  Google Scholar 

  88. Zhang H, Kinnear C, Mulvaney P. Fabrication of single-nanocrystal arrays. Advanced Materials, 2020, 32(18): e1904551

    Article  Google Scholar 

  89. Yoon G, Kim I, Rho J. Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163(1): 7–20

    Article  Google Scholar 

  90. Yao Y, Liu H, Wang Y, Li Y, Song B, Wang R P, Povinelli M L, Wu W. Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range. Optics Express, 2016, 24(14): 15362–15372

    Article  Google Scholar 

  91. Lee G Y, Hong J Y, Hwang S, Moon S, Kang H, Jeon S, Kim H, Jeong J H, Lee B. Metasurface eyepiece for augmented reality. Nature Communications, 2018, 9(1): 4562

    Article  Google Scholar 

  92. Wan Y H, Krueger N A, Ocier C R, Su P, Braun P V, Cunningham B T. Resonant mode engineering of photonic crystal sensors clad with ultralow refractive index porous silicon dioxide. Advanced Optical Materials, 2017, 5(21): 1700605

    Article  Google Scholar 

  93. Sutherland B R, Sargent E H. Perovskite photonic sources. Nature Photonics, 2016, 10(5): 295–302

    Article  Google Scholar 

  94. Chun D H, Choi Y J, In Y, Nam J K, Choi Y J, Yun S, Kim W, Choi D, Kim D, Shin H, Cho J H, Park J H. Halide perovskite nanopillar photodetector. ACS Nano, 2018, 12(8): 8564–8571

    Article  Google Scholar 

  95. Pourdavoud N, Wang S, Mayer A, Hu T, Chen Y, Marianovich A, Kowalsky W, Heiderhoff R, Scheer H C, Riedl T. Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Advanced Materials, 2017, 29 (12): 1605003

    Article  Google Scholar 

  96. Mao J, Sha W E I, Zhang H, Ren X G, Zhuang J Q, Roy V A L, Wong K S, Choy W C H. Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Advanced Functional Materials, 2017, 27(10): 1606525

    Article  Google Scholar 

  97. Makarov S V, Milichko V, Ushakova E V, Omelyanovich M, Pasaran A C, Haroldson R, Balachandran B, Wang H L, Hu W, Kivshar Y S, Zakhidov A A. Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics, 2017, 4(4): 728–735

    Article  Google Scholar 

  98. Wang H, Liu S C, Balachandran B, Moon J, Haroldson R, Li Z, Ishteev A, Gu Q, Zhou W, Zakhidov A, Hu W. Nanoimprinted perovskite metasurface for enhanced photoluminescence. Optics Express, 2017, 25(24): A1162–A1171

    Article  Google Scholar 

  99. Baek S W, Molet P, Choi M J, Biondi M, Ouellette O, Fan J, Hoogland S, García de Arquer F P, Mihi A, Sargent E H. Nanostructured back reflectors for efficient colloidal quantum-dot infrared optoelectronics. Advanced Materials, 2019, 31(33): e1901745

    Article  Google Scholar 

  100. Kim Y, Bicanic K, Tan H, Ouellette O, Sutherland B R, García de Arquer F P, Jo J W, Liu M, Sun B, Liu M, Hoogland S, Sargent E H. Nanoimprint-transfer-patterned solids enhance light absorption in colloidal quantum dot solar cells. Nano Letters, 2017, 17(4): 2349–2353

    Article  Google Scholar 

  101. Pina-Hernandez C, Koshelev A, Dhuey S, Sassolini S, Sainato M, Cabrini S, Munechika K. Nanoimprinted high-refractive index active photonic nanostructures based on quantum dots for visible light. Scientific Reports, 2017, 7(1): 17645

    Article  Google Scholar 

  102. Guo L J. Nanoimprint lithography: methods and material requirements. Advanced Materials, 2007, 19(4): 495–513

    Article  Google Scholar 

  103. Wang C, Shao J, Tian H, Li X, Ding Y, Li B Q. Step-controllable electric-field-assisted nanoimprint lithography for uneven large-area substrates. ACS Nano, 2016, 10(4): 4354–4363

    Article  Google Scholar 

  104. Ahn S H, Guo L J. High-speed roll-to-roll nanoimprint lithography on flexible plastic substrates. Advanced Materials, 2008, 20(11): 2044–2049

    Article  Google Scholar 

  105. Lee S H, Kim S W, Kang B S, Chang P S, Kwak M K. Scalable and continuous fabrication of bio-inspired dry adhesives with a thermosetting polymer. Soft Matter, 2018, 14(14): 2586–2593

    Article  Google Scholar 

  106. Wong H C, Grenci G, Wu J, Viasnoff V, Low H Y. Roll-to-roll fabrication of residual-layer-free micro/nanoscale membranes with precise pore architectures and tunable surface textures. Industrial & Engineering Chemistry Research, 2018, 57(41): 13759–13768

    Article  Google Scholar 

  107. Wang Z Z, Yi P Y, Peng L F, Lai X M, Ni J. Continuous fabrication of highly conductive and transparent Ag mesh electrodes for flexible electronics. IEEE Transactions on Nanotechnology, 2017, 16(4): 687–694

    Article  Google Scholar 

  108. Yi P Y, Zhang C P, Peng L F, Lai X M. Flexible silver-mesh electrodes with moth-eye nanostructures for transmittance enhancement by double-sided roll-to-roll nanoimprint lithography. RSC Advances, 2017, 7(77): 48835–48840

    Article  Google Scholar 

  109. Lee N, Yoo S, Kim C H, Lim J. Development of continuous metal patterns using two-dimensional atmospheric-pressure plasma-jet: On application to fabricate electrode on a flexible surface for film touch sensor. Journal of Micromechanics and Microengineering, 2019, 29(4): 045013

    Article  Google Scholar 

  110. Wang L J, Zheng Y S, Wu C, Jia S L. Experimental investigation of photoresist etching by kHz AC atmospheric pressure plasma jet. Applied Surface Science, 2016, 385(1): 191–198

    Article  Google Scholar 

  111. Zhou Y Q, Li M J, Shen L G, Ye H C, Wang J P, Huang S Z. Effect of resin accumulation on filling process in roll-to-roll UV imprint lithography. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures, 2017, 35(3): 031602

    Google Scholar 

  112. Tahir U, Kamran M A, Jeong M Y. Numerical study on the optimization of roll-to-roll ultraviolet imprint lithography. Coatings, 2019, 9(9): 573

    Article  Google Scholar 

  113. Kotz F, Schneider N, Striegel A, Wolfschläger A, Keller N, Worgull M, Bauer W, Schild D, Milich M, Greiner C, Helmer D, Rapp B E. Glassomer-processing fused silica glass like a polymer. Advanced Materials, 2018, 30(22): e1707100

    Article  Google Scholar 

  114. Leitgeb M, Nees D, Ruttloff S, Palfinger U, Götz J, Liska R, Belegratis M R, Stadlober B. Multilength scale patterning of functional layers by roll-to-roll ultraviolet-light-assisted nanoimprint lithography. ACS Nano, 2016, 10(5): 4926–4941

    Article  Google Scholar 

  115. Koo S, Lee S H, Kim J D, Hong J G, Baac H W, Kwak M K, Ok J G. Controlled airbrush coating of polymer resists in roll-to-roll nanoimprinting with regimented residual layer thickness. International Journal of Precision Engineering and Manufacturing, 2016, 17(7): 943–947

    Article  Google Scholar 

  116. Lee J H, Na M, Kim J, Yoo K, Park J, Kim J D, Oh D K, Lee S, Youn H, Kwak M K, Ok J G. Rapid and conformal coating of polymer resins by airbrushing for continuous and high-speed roll-to-roll nanopatterning: parametric quality controls and extended applications. Nano Convergence, 2017, 4(1): 11

    Article  Google Scholar 

  117. Kodihalli Shivaprakash N, Ferraguto T, Panwar A, Banerjee S S, Barry C F, Mead J. Fabrication of flexible polymer molds for polymer microstructuring by roll-to-roll hot embossing. ACS Omega, 2019, 4(7): 12480–12488

    Article  Google Scholar 

  118. Striegel A, Schneider M, Schneider N, Benkel C, Worgull M. Seamless tool fabrication for roll-to-roll microreplication. Microelectronic Engineering, 2018, 194(1): 8–14

    Article  Google Scholar 

  119. Zhang X Q, Huang R, Liu K, Kumar A S, Shan X C. Rotating-tool diamond turning of Fresnel lenses on a roller mold for manufacturing of functional optical film. Precision Engineering, 2018, 51(1): 445–457

    Article  Google Scholar 

  120. Lee Y H, Ke K C, Chang N W, Yang S Y. Development of an UV rolling system for fabrication of micro/nano structure on polymeric films using a gas-roller-sustained seamless PDMS mold. Microsystem Technologies, 2018, 24(7): 2941–2948

    Article  Google Scholar 

  121. Lee C R, Ok J G, Jeong M Y. Nanopatterning on the cylindrical surface using an e-beam pre-mapping algorithm. Journal of Micromechanics and Microengineering, 2019, 29(1): 015004

    Article  Google Scholar 

  122. Dumond J J, Low H Y, Lee H P, Fuh J Y H. Multi-functional silicone stamps for reactive release agent transfer in UV roll-to-roll nanoimprinting. Materials Horizons, 2016, 3(2): 152–160

    Article  Google Scholar 

  123. Odom T W, Love J C, Wolfe D B, Paul K E, Whitesides G M. Improved pattern transfer in soft lithography using composite stamps. Langmuir, 2002, 18(13): 5314–5320

    Article  Google Scholar 

  124. Kim S, Hyun S, Lee J, Lee K S, Lee W, Kim J K. Anodized aluminum oxide/polydimethylsiloxane hybrid mold for roll-to-roll nanoimprinting. Advanced Functional Materials, 2018, 28(23): 1800197

    Article  Google Scholar 

  125. Ansari K, Kan J, Bettiol A A, Watt F. Stamps for nanoimprint lithography fabricated by proton beam writing and nickel electroplating. Journal of Micromechanics and Microengineering, 2006, 16(10): 1967–1974

    Article  Google Scholar 

  126. Liu F, Tan K B, Malar P, Bikkarolla S K, van Kan J A. Fabrication of nickel molds using proton beam writing for micro/nano fluidic devices. Microelectronic Engineering, 2013, 102(1): 36–39

    Article  Google Scholar 

  127. Lin X, Dou X, Wang X, Chen R T. Nickel electroplating for nanostructure mold fabrication. Journal of Nanoscience and Nanotechnology, 2011, 11(8): 7006–7010

    Article  Google Scholar 

  128. Kwak M K, Ok J G, Lee S H, Guo L J. Visually tolerable tiling (VTT) for making a large-area flexible patterned surface. Materials Horizons, 2015, 2(1): 86–90

    Article  Google Scholar 

  129. Ok J G, Ahn S H, Kwak M K, Guo L J. Continuous and high-throughput nanopatterning methodologies based on mechanical deformation. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2013, 1(46): 7681–7691

    Article  Google Scholar 

  130. Ok J G, Shin Y J, Park H J, Guo L J. A step toward next-generation nanoimprint lithography: extending productivity and applicability. Applied Physics A, Materials Science & Processing, 2015, 121(2): 343–356

    Article  Google Scholar 

  131. Ok J G, Park H J, Kwak M K, Pina-Hernandez C A, Ahn S H, Guo L J. Continuous patterning of nanogratings by nanochannel-guided lithography on liquid resists. Advanced Materials, 2011, 23(38): 4444–4448

    Article  Google Scholar 

  132. Ahn S H, Guo L J. Dynamic nanoinscribing for continuous and seamless metal and polymer nanogratings. Nano Letters, 2009, 9 (12): 4392–4397

    Article  Google Scholar 

  133. Oh D K, Nguyen D T, Lee S, Ko P, Heo G S, Yun C H, Ha T W, Youn H, Ok J G. Facile and scalable fabrication of flexible reattachable ionomer nanopatterns by continuous multidimensional nanoinscribing and low-temperature roll imprinting. ACS Applied Materials & Interfaces, 2019, 11(12): 12070–12076

    Article  Google Scholar 

  134. Oh D K, Lee S, Lee S H, Lee W, Yeon G, Lee N, Han K S, Jung S, Kim D H, Lee D Y, Lee S H, Park H J, Ok J G. Tailored nanopatterning by controlled continuous nanoinscribing with tunable shape, depth, and dimension. ACS Nano, 2019, 13(10): 11194–11202

    Article  Google Scholar 

  135. Ahn S H, Ok J G, Kwak M K, Lee K T, Lee J Y, Guo L J. Template-free vibrational indentation patterning (VIP) of micro/nanometer-scale grating structures with real-time pitch and angle tunability. Advanced Functional Materials, 2013, 23(37): 4739–4744

    Google Scholar 

  136. Ok J G, Panday A, Lee T, Jay Guo L. Continuous fabrication of scalable 2-dimensional (2D) micro- and nanostructures by sequential 1D mechanical patterning processes. Nanoscale, 2014, 6(24): 14636–14642

    Article  Google Scholar 

  137. Ahiboz D, Manley P, Becker C. Adjustable large-area dielectric metasurfaces for near-normal oblique incident excitation. OSA Continuum, 2020, 3(4): 971–981

    Article  Google Scholar 

  138. Zhu J, Wang Z, Lin S, Jiang S, Liu X, Guo S. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosensors & Bioelectronics, 2020, 150(1): 111905

    Article  Google Scholar 

  139. Das Gupta T, Martin-Monier L, Yan W, Le Bris A, Nguyen-Dang T, Page A G, Ho K T, Yesilköy F, Altug H, Qu Y, Sorin F. Self-assembly of nanostructured glass metasurfaces via templated fluid instabilities. Nature Nanotechnology, 2019, 14(4): 320–327

    Article  Google Scholar 

  140. Shneidman A V, Becker K P, Lukas M A, Torgerson N, Wang C, Reshef O, Burek M J, Paul K, McLellan J, Lončar M. All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography. ACS Photonics, 2018, 5(5): 1839–1845

    Article  Google Scholar 

  141. Zhang C, Yi P, Peng L, Lai X, Chen J, Huang M, Ni J. Continuous fabrication of nanostructure arrays for flexible surface enhanced Raman scattering substrate. Scientific Reports, 2017, 7(1): 39814

    Article  Google Scholar 

  142. Suresh V, Ding L, Chew A B, Yap F L. Fabrication of large-area flexible SERS substrates by nanoimprint lithography. ACS Applied Nano Materials, 2018, 1(2): 886–893

    Article  Google Scholar 

  143. Deng Y, Yi P, Peng L, Lai X, Lin Z. Experimental investigation on the large-area fabrication of micro-pyramid arrays by roll-to-roll hot embossing on PVC film. Journal of Micromechanics and Microengineering, 2014, 24(4): 045023

    Article  Google Scholar 

  144. Højlund-Nielsen E, Clausen J, Mäkela T, Thamdrup L H, Zalkovskij M, Nielsen T, Li Pira N, Ahopelto J, Mortensen N A, Kristensen A. Plasmonic colors: toward mass production of metasurfaces. Advanced Materials Technologies, 2016, 1(7): 1600054

    Article  Google Scholar 

  145. Murthy S, Pranov H, Feidenhans’l N A, Madsen J S, Hansen P E, Pedersen H C, Taboryski R. Plasmonic color metasurfaces fabricated by a high speed roll-to-roll method. Nanoscale, 2017, 9(37): 14280–14287

    Article  Google Scholar 

  146. Ok J G, Youn H S, Kwak M K, Lee K T, Shin Y J, Guo L J, Greenwald A, Liu Y S. Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Applied Physics Letters, 2012, 101(22): 223102

    Article  Google Scholar 

  147. Wi J S, Lee S, Lee S H, Oh D K, Lee K T, Park I, Kwak M K, Ok J G. Facile three-dimensional nanoarchitecturing of double-bent gold strips on roll-to-roll nanoimprinted transparent nanogratings for flexible and scalable plasmonic sensors. Nanoscale, 2017, 9(4): 1398–1402

    Article  Google Scholar 

  148. Wi J S, Oh D K, Kwak M K, Ok J G. Size-dependent detection sensitivity of spherical particles sitting on a double-bent gold strip array. Optical Materials Express, 2018, 8(7): 1774–1779

    Article  Google Scholar 

  149. Jeon S, Shir D J, Nam Y S, Nidetz R, Highland M, Cahill D G, Rogers J A, Su M F, El-Kady I F, Christodoulou C G, Bogart G R. Molded transparent photopolymers and phase shift optics for fabricating three dimensional nanostructures. Optics Express, 2007, 15(10): 6358–6366

    Article  Google Scholar 

  150. Choi J H, Oh C M, Jang J W. Micro- and nano-patterns fabricated by embossed microscale stamp with trenched edges. RSC Advances, 2017, 7(51): 32058–32064

    Article  Google Scholar 

  151. Yanagishita T, Murakoshi K, Kondo T, Masuda H. Preparation of superhydrophobic surfaces with micro/nano alumina molds. RSC Advances, 2018, 8(64): 36697–36704

    Article  Google Scholar 

  152. Kim S J, Jung P H, Kim W, Lee H, Hong S H. Generation of highly integrated multiple vivid colours using a three-dimensional broadband perfect absorber. Scientific Reports, 2019, 9(1): 14859

    Article  Google Scholar 

  153. Jeong H E, Lee J K, Kim H N, Moon S H, Suh K Y. A nontransferring dry adhesive with hierarchical polymer nanohairs. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5639–5644

    Article  Google Scholar 

  154. Karageorgiev P, Neher D, Schulz B, Stiller B, Pietsch U, Giersig M, Brehmer L. From anisotropic photo-fluidity towards nanomanipulation in the optical near-field. Nature Materials, 2005, 4(9): 699–703

    Article  Google Scholar 

  155. Choi J, Cho W, Jung Y S, Kang H S, Kim H T. Direct fabrication of micro/nano-patterned surfaces by vertical-directional photo-fluidization of azobenzene materials. ACS Nano, 2017, 11(2): 1320–1327

    Article  Google Scholar 

  156. Choi J, Jo W, Lee S Y, Jung Y S, Kim S H, Kim H T. Flexible and robust superomniphobic surfaces created by localized photofluidization of azopolymer pillars. ACS Nano, 2017, 11(8): 7821–7828

    Article  Google Scholar 

  157. Liu Z, Cui Q, Huang Z, Guo L J. Transparent colored display enabled by flat glass waveguide and nanoimprinted multilayer gratings. ACS Photonics, 2020, 7(6): 1418–1424

    Article  Google Scholar 

  158. Kothari R, Beaulieu M R, Hendricks N R, Li S, Watkins J J. Direct patterning of robust one-dimensional, two-dimensional, and three-dimensional crystalline metal oxide nanostructures using imprint lithography and nanoparticle dispersion inks. Chemistry of Materials, 2017, 29(9): 3908–3918

    Article  Google Scholar 

  159. Li W, Zhou Y, Howell I R, Gai Y, Naik A R, Li S, Carter K R, Watkins J J. Direct imprinting of scalable, high-performance woodpile electrodes for three-dimensional lithium-ion nanobatteries. ACS Applied Materials & Interfaces, 2018, 10(6): 5447–5454

    Article  Google Scholar 

  160. Liu D M, Wang Q K, Wang Q. Transfer the multiscale texture of crystalline Si onto thin-film micromorph cell by UV nanoimprint for light trapping. Applied Surface Science, 2018, 439(1): 168–175

    Article  Google Scholar 

  161. Choi J, Jia Z, Park S. Fabrication of polymeric dual-scale nanoimprint molds using a polymer stencil membrane. Microelectronic Engineering, 2018, 199(1): 101–105

    Article  Google Scholar 

  162. Han K S, Hong S H, Kim K I, Cho J Y, Choi K W, Lee H. Fabrication of 3D nano-structures using reverse imprint lithography. Nanotechnology, 2013, 24(4): 045304

    Article  Google Scholar 

  163. Kwon Y W, Park J, Kim T, Kang S H, Kim H, Shin J, Jeon S, Hong S W. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures. ACS Nano, 2016, 10(4): 4609–4617

    Article  Google Scholar 

  164. Wang C, Shao J, Lai D, Tian H, Li X. Suspended-template electric-assisted nanoimprinting for hierarchical micro-nanostructures on a fragile substrate. ACS Nano, 2019, 13(9): 10333–10342

    Article  Google Scholar 

  165. Chandramohan A, Sibirev N V, Dubrovskii V G, Petty M C, Gallant A J, Zeze D A. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. Scientific Reports, 2017, 7(1): 40888

    Article  Google Scholar 

  166. Nakagawa M, Nakaya A, Hoshikawa Y, Ito S, Hiroshiba N, Kyotani T. Size-dependent filling behavior of UV-curable di(meth) acrylate resins into carbon-coated anodic aluminum oxide pores of around 20 nm. ACS Applied Materials & Interfaces, 2016, 8(44): 30628–30634

    Article  Google Scholar 

  167. Hua F, Sun Y G, Gaur A, Meitl M A, Bilhaut L, Rotkina L, Wang J F, Geil P, Shim M, Rogers J A, Shim A. Polymer imprint lithography with molecular-scale resolution. Nano Letters, 2004, 4 (12): 2467–2471

    Article  Google Scholar 

  168. Yim W, Park S J, Han S Y, Park Y H, Lee S W, Park H J, Ahn Y H, Lee S, Park J Y. Carbon nanotubes as etching masks for the formation of polymer nanostructures. ACS Applied Materials & Interfaces, 2017, 9(50): 44053–44059

    Article  Google Scholar 

  169. Pi S, Lin P, Xia Q. Fabrication of sub-10 nm metal nanowire arrays with sub-1 nm critical dimension control. Nanotechnology, 2016, 27(46): 464004

    Article  Google Scholar 

  170. Woo J Y, Jo S, Oh J H, Kim J T, Han C S. Facile and precise fabrication of 10-nm nanostructures on soft and hard substrates. Applied Surface Science, 2019, 484(1): 317–325

    Article  Google Scholar 

  171. Lim S H, Saifullah M S, Hussain H, Loh W W, Low H Y. Direct imprinting of high resolution TiO2 nanostructures. Nanotechnology, 2010, 21(28): 285303

    Article  Google Scholar 

  172. Menumerov E, Golze S D, Hughes R A, Neretina S. Arrays of highly complex noble metal nanostructures using nanoimprint lithography in combination with liquid-phase epitaxy. Nanoscale, 2018, 10(38): 18186–18194

    Article  Google Scholar 

  173. Pina-Hernandez C, Fu P F, Guo L J. Ultrasmall structure fabrication via a facile size modification of nanoimprinted functional silsesquioxane features. ACS Nano, 2011, 5(2): 923–931

    Article  Google Scholar 

  174. Yao Y H, Wang Y F, Liu H, Li Y R, Song B X, Wu W. Line width tuning and smoothening for periodical grating fabrication in nanoimprint lithography. Applied Physics A, Materials Science & Processing, 2015, 121(2): 399–403

    Article  Google Scholar 

  175. Wang S S, Magnusson R. Theory and applications of guided-mode resonance filters. Applied Optics, 1993, 32(14): 2606–2613

    Article  Google Scholar 

  176. Liu Z. One-step fabrication of crystalline metal nanostructures by direct nanoimprinting below melting temperatures. Nature Communications, 2017, 8(1): 14910

    Article  Google Scholar 

  177. Bhadauriya S, Wang X, Pitliya P, Zhang J, Raghavan D, Bockstaller M R, Stafford C M, Douglas J F, Karim A. Tuning the relaxation of nanopatterned polymer films with polymergrafted nanoparticles: observation of entropy-enthalpy compensation. Nano Letters, 2018, 18(12): 7441–7447

    Article  Google Scholar 

  178. Liu L, Zhang Q, Lu Y S, Du W, Li B, Cui Y S, Yuan C S, Zhan P, Ge H X, Wang Z L, Chen Y F. A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template. AIP Advances, 2017, 7(6): 065205

    Article  Google Scholar 

  179. Jung Y, Hwang I, Yu J, Lee J, Choi J H, Jeong J H, Jung J Y, Lee J. Fano metamaterials on nanopedestals for plasmon-enhanced infrared spectroscopy. Scientific Reports, 2019, 9(1): 7834

    Article  Google Scholar 

  180. Yao Y H, Wu W. All-dielectric heterogeneous metasurface as an efficient ultra-broadband reflector. Advanced Optical Materials, 2017, 5(14): 1700090

    Article  Google Scholar 

  181. Hemmati H, Magnusson R. Resonant dual-grating metamembranes supporting spectrally narrow bound states in the continuum. Advanced Optical Materials, 2019, 7(20): 1900754

    Article  Google Scholar 

  182. Zhang C, Subbaraman H, Li Q, Pan Z, Ok J G, Ling T, Chung C J, Zhang X, Lin X, Chen R T, Guo L J. Printed photonic elements: nanoimprinting and beyond. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2016, 4(23): 5133–5153

    Article  Google Scholar 

  183. Lee K T, Jang J Y, Park S J, Ji C G, Yang S M, Guo L J, Park H J. Angle-insensitive and CMOS-compatible subwavelength color printing. Advanced Optical Materials, 2016, 4(11): 1696–1702

    Article  Google Scholar 

  184. Liu H, Yang H, Li Y R, Song B X, Wang Y F, Liu Z R, Peng L, Lim H, Yoon J, Wu W. Switchable all-dielectric metasurfaces for full-color reflective display. Advanced Optical Materials, 2019, 7 (8): 1801639

    Article  Google Scholar 

  185. Joo W J, Kyoung J, Esfandyarpour M, Lee S H, Koo H, Song S, Kwon Y N, Song S H, Bae J C, Jo A, Kwon M J, Han S H, Kim S H, Hwang S, Brongersma M L. Metasurface-driven OLED displays beyond 10000 pixels per inch. Science, 2020, 370 (6515): 459–463

    Article  Google Scholar 

  186. Yoon G, Kim K, Kim S U, Han S, Lee H, Rho J. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 2021, 15(1): 698–706

    Article  Google Scholar 

  187. Checcucci S, Bottein T, Gurioli M, Favre L, Grosso D, Abbarchi M. Multifunctional metasurfaces based on direct nanoimprint of titania sol-gel coatings. Advanced Optical Materials, 2019, 7(10): 1801406

    Article  Google Scholar 

  188. Kim K, Yoon G, Baek S, Rho J, Lee H. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Applied Materials & Interfaces, 2019, 11(29): 26109–26115

    Article  Google Scholar 

  189. Yoon G, Kim K, Huh D, Lee H, Rho J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nature Communications, 2020, 11(1): 2268

    Article  Google Scholar 

  190. Gopalan K K, Paulillo B, Mackenzie D M A, Rodrigo D, Bareza N, Whelan P R, Shivayogimath A, Pruneri V. Scalable and tunable periodic graphene nanohole arrays for mid-infrared plasmonics. Nano Letters, 2018, 18(9): 5913–5918

    Article  Google Scholar 

  191. Zhao Z J, Lee M, Kang H, Hwang S, Jeon S, Park N, Park S H, Jeong J H. Eight inch wafer-scale flexible polarization-dependent color filters with Ag-TiO2 composite nanowires. ACS Applied Materials & Interfaces, 2018, 10(10): 9188–9196

    Article  Google Scholar 

  192. Driencourt L, Federspiel F, Kazazis D, Tseng L T, Frantz R, Ekinci Y, Ferrini R, Gallinet B. Electrically tunable multicolored filter using birefringent plasmonic resonators and liquid crystals. ACS Photonics, 2020, 7(2): 444–453

    Article  Google Scholar 

  193. Shin Y J, Pina-Hernandez C, Wu Y K, Ok J G, Guo L J. Facile route of flexible wire grid polarizer fabrication by angled-evaporations of aluminum on two sidewalls of an imprinted nanograting. Nanotechnology, 2012, 23(34): 344018

    Article  Google Scholar 

  194. Matricardi C, Garcia-Pomar J L, Molet P, Perez L A, Alonso M I, Campoy-Quiles M, Mihi A. High-throughput nanofabrication of metasurfaces with polarization-dependent response. Advanced Optical Materials, 2020, 8(20): 2000786

    Article  Google Scholar 

  195. Yoon G, Kim K, Kim S U, Han S, Lee H, Rho J. Printable nanocomposite metalens for high-contrast near-infrared imaging. ACS Nano, 2021, 15(1): 698–706

    Article  Google Scholar 

  196. Yang Y, Yoon G, Park S, Namgung S D, Badloe T, Nam K T, Rho J. Revealing structural disorder in hydrogenated amorphous silicon for a low-loss photonic platform at visible frequencies. Advanced Materials, 2021, 33(9): e2005893

    Article  Google Scholar 

  197. Oh D K, Jeong H, Kim J, Kim Y, Kim I, Ok J G, Rho J. Top-down nanofabrication approaches toward single-digit-nanometer scale structures. Journal of Mechanical Science and Technology, 20201, 35(3): 837–859

  198. Stolt T, Kim J, Héron S, Vesala A, Yang Y, Mun J, Kim M, Huttunen M J, Czaplicki R, Kauranen M, Rho J, Genevet P. Backward phase-matched second-harmonic generation from stacked metasurfaces. Physical Review Letters, 2021, 126(3): 033901

    Article  Google Scholar 

  199. Lee D, Go M, Kim M, Jang J, Choi C, Kim J K, Rho J. Multiple-patterning colloidal lithography-implemented scalable manufacturing of heat-tolerant titanium nitride broadband absorbers in the visible to near-infrared. Microsystems & Nanoengineering, 2021, 7(1): 14

    Article  Google Scholar 

  200. Kim I, Ansari M A, Mehmood M Q, Kim W S, Jang J, Zubair M, Kim Y K, Rho J. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators. Advanced Materials, 2020, 32(50): e2004664

    Article  Google Scholar 

  201. Chen Y, Ai B, Wong Z J. Soft optical metamaterials. Nano Convergence, 2020, 7(1): 18

    Article  Google Scholar 

  202. Naveed M A, Ansari M A, Kim I, Badloe T, Kim J, Oh D K, Riaz K, Tauqeer T, Younis U, Saleem M, Anwar M S, Zubair M, Mehmood M Q, Rho J. Optical spin-symmetry breaking for high-efficiency directional helicity-multiplexed metaholograms. Microsystems & Nanoengineering, 2021, 7(1): 5

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Research Foundation (NRF) grant (NRF-2019R1A2C3003129) funded by the Ministry of Science and ICT, Republic of Korea. T.L. acknowledges the NRF Global Ph.D. fellowship (NRF-2019H1A2A1076295) funded by the Ministry of Education, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong G. Ok or Junsuk Rho.

Additional information

Dong Kyo Oh obtained his B.S. (2017) and M.S. (2019) degrees in Mechanical and Automotive Engineering from Seoul National University of Science and Technology (SEOULTECH), Republic of Korea. Currently, he is a Ph.D. student in Mechanical Engineering at Pohang University of Science and Technology (POSTECH), Republic of Korea. His research is mainly focused on flat optics based on metasurfaces, nanofabrication of metamaterials, and alternative nanofabrication.

Taejun Lee obtained his B.S. degree in Mechanical Engineering from Gachon University, Republic of Korea, in 2017. He is currently an M.S./Ph.D. integrated student in Mechanical Engineering at POSTECH, Republic of Korea. His research interest is novel lithography and dielectric metasurfaces.

Byoungsu Ko obtained his B.S. degree in Mechanical Engineering from Myongji University, Republic of Korea, in 2019. Currently, he is an M.S./Ph.D. integrated student in Mechanical Engineering at POSTECH, Republic of Korea. His research interests focus on nanofabrication and tunable metasurfaces.

Trevon Badloe obtained his M.Phys. (hons) degree (2012) from The University of Sheffield, United Kingdom with one-year study abroad at National University of Singapore, Singapore (2010). After three years of teaching courses in English and classical mechanics as an assistant professor at Yeungjin University, Republic of Korea, he started working towards his Ph.D. in Mechanical Engineering at POSTECH, Republic of Korea (2017). His research interests include tunable metamaterials and metasurfaces, and machine learning for the design and optimization of nanophotonic applications.

Jong G. Ok is currently an associate professor in the Department of Mechanical and Automotive Engineering at SEOULTECH, Republic of Korea. He received his B.S. (2002) and M.S. (2007) degrees in Mechanical and Aerospace Engineering from Seoul National University, Republic of Korea, and Ph.D. (2013) degree in Mechanical Engineering from the University of Michigan, USA. His research focuses on smart and scalable nanomanufacturing and multiscale hybrid nanoarchitecturing.

Junsuk Rho is currently a Mu-En-Jae endowed chair associate professor with a joint appointment in Mechanical Engineering and Chemical Engineering at POSTECH, Republic of Korea. He received his B.S. (2007), M.S (2008), Ph.D. (2013) degrees all in Mechanical Engineering from Seoul National University, University of Illinois, Urbana-Champaign, University of California, Berkeley, respectively. His research is focused on developing novel nanophotonic materials and devices based on fundamental physics and experimental studies of deep sub-wavelength light-matter interaction.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, D.K., Lee, T., Ko, B. et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron. 14, 229–251 (2021). https://doi.org/10.1007/s12200-021-1121-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-021-1121-8

Keywords

Navigation