Skip to main content
Log in

A stereovision-based crack width detection approach for concrete surface assessment

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

To quantitatively evaluate crack width of concrete structures surface, this paper presents a stereovision-based crack width detection method. Compared with the traditional visual inspection with single camera, this approach uses a pair of cameras to capture cracks images for recovering 3D coordinates of crack edge, and does not needs scale attached to concrete surface for converting measurement unit. A novel Canny-Zernike combination algorithm is utilized to obtain the image coordinates of crack edge in the left crack image, this combination algorithm can achieve 0.02 subpixel precision. The 3D coordinates of crack edge are acquired by projecting crack edge curve on concrete surface where cracks are located. The crack width is assessed by the minimum distance between two sides of crack edge. The detection tests are conducted on three concrete beams destroyed in static test, and the crack width of two inspection zones on each beam is acquired. Experimental results indicate that the stereovision-based crack width detection approach can accurately measure the crack width compared with the crack width gauge or the vernier calliper. This verifies the proposed method is applicable and useful for assessing the crack width of concrete surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beis, J. S. and Lowe, D. G. (1997). “Shape indexing using approximate Nearest-Neighbour search in high-dimensional spaces.” Computer Vision and Pattern Recognition, Proceedings of IEEE Computer Society Conference on, pp. 1000–1006, DOI: 10.1109/CVPR.1997.609451.

    Chapter  Google Scholar 

  • Bellavia, F., Tegolo, D., and Valenti, C. (2011). “Improving harris corner selection strategy.” IET Computer Vision, Vol. 5, No. 2, pp. 87–96, DOI: 10.1049/iet-cvi.2009.0127.

    Article  MathSciNet  Google Scholar 

  • Canny, J. (1986). “A computational approach to edge detection.” IEEE Transaction on. Pattern Analysis Machine Intelligence, Vol. 8, No. 6, pp. 679–698, DOI: 10.1109/TPAMI.1986.4767851.

    Article  Google Scholar 

  • Dare, P., Hanley, H., Fraser, C., Riedel, B., and Niemeier, W. (2003). “An operational application of automatic feature extraction: The measurement of cracks in concrete structures.” The Photogrammetric Record, Vol. 17, No. 99, pp. 453–464, DOI: 10.1111/0031-868X.00198.

    Article  Google Scholar 

  • Ghosal, S. and Mehrotra, R. (1993). “Orthogonal moment operators for subpixel edge detection.” Pattern Recognition, Vol. 26, No. 2, pp. 295–306, DOI: 10.1016/0031-3203(93)90038-X.

    Article  Google Scholar 

  • Gong, J., Li, L. Y., and Chen, W. (1998). “Fast recursive algorithms for two-dimensional thresholding.” Pattern Recognition, Vol. 31, No. 3, pp. 295–300, DOI: 10.1016/S0031-3203(97)00043-5.

    Article  Google Scholar 

  • Illingworth, J. and Kittler, J. (1988). “A survey of the hough transform.” Computer Vision, Graphics, and Image Processing, Vol. 44, No. 1, pp. 87–116, DOI: 10.1016/S0734-189X(88)80033-1.

    Article  Google Scholar 

  • Jahanshahi, M. R. and Masri, S. F. (2013). “A new methodology for non-contact accurate crack width measurement through photogrammetry for automated structural safety evaluation.” Smart Materials and Structures, Vol. 22, No. 3, pp. 035019, DOI: 10.1088/0964-1726/22/3/035019.

    Article  Google Scholar 

  • Kai, T. W. and Christopher, K. Y. Leung (2007). “Applications of a distributed fiber optic crack sensor for concrete structures.” Sensors and Actuators A: Physical, Vol. 135, No. 12, pp. 458–464, DOI: 10.1016/j.sna.2006.09.004.

    Google Scholar 

  • Li, G., Xiao, X. P., and Gui, Y. F. (2009). “A novel algorithm of image denoising based on the grey absolute relational analysis.” IEEE International Conference on Grey System and Intelligent Services, Nanjing, China, Vol. 1, pp. 181–185, DOI: 10.1109/GSIS.2009.5408327.

    Google Scholar 

  • Li, X. D., Xie, H. M., Kang, Y. L., and Wu, X. P. (2010). “A brief review and prospect of experimental solid mechanics in China.” Acta Mechanica Solida Sinica, Vol. 23, No. 6, pp. 498–548, DOI: 10.1016/S0894-9166(11)60003-7.

    Article  Google Scholar 

  • Longuet-Higgins, H. (1981). “A computer algorithm for reconstructing a scene from two projections.” Nature, Vol. 239, pp. 133–135, DOI: 10.1038/293133a0.

    Article  Google Scholar 

  • Lowe, D. G. (1999). “Object recognition from local scale-invariant features.” Computer Vision (ICCV), Proceeding of Seventh IEEE International Conference on, Vol. 2, pp. 1150–1157, DOI: 10.1109/ICCV.1999.790410.

    Article  Google Scholar 

  • Lowe, D. G. (2004). “Distinctive image features from scale-invariant keypoints.” Computer Vision (ICCV), Proceeding of IEEE International Conference on, Vol. 60, No. 2, pp. 91–110, DOI: 10.1023/B:VISI.0000029664.99615.94.

    Article  Google Scholar 

  • Marr, D. and Hildreth, E. (1980). “Theory of edge detection.” Proc. Royal Soc. London B, Vol. 207, No. 1167, pp. 187–217, DOI: 10.1098/rspb.1980.0020.

    Article  Google Scholar 

  • McCann, D. and Forde, M. (2001). “Review of NDT methods in the assessment of concrete and masonry structures.” NDT & E International, Vol. 34, No. 2, pp. 71–84, DOI: 10.1016/S0963-8695(00)00032-3.

    Article  Google Scholar 

  • Otsu, N. (1979). “A threshold selection method from gray-level histogram.” IEEE Transactions on System, Man, Cybernetics, Vol. 9, No. 1, pp. 62–66, DOI: 0018-9472/79/0100-0062.

    Article  MathSciNet  Google Scholar 

  • Qu, Y. D. and Cui, C. S. (2005). “A fast subpixel edge detection method using Sobel-Zernike moments operator.” Image and Vision Computing, Vol. 23, No. 1, pp. 11–17, DOI: 10.1016/j.imavis.2004.07.003.

    Article  Google Scholar 

  • Roberts, L. G. (1963). Machine perception of three dimension solids, Massachusetts Institute of Technology, PhD Thesis, http://hdl.handle.net/1721.1/11589.

    Google Scholar 

  • Smith, S. M. and Brady, J. M. (1997). “SUSAN-a new approach to low level image processing.” International Journal of Computer Vision, Vol. 23, No. 1, pp. 45–78, DOI: 10.1023/A:1007963824710.

    Article  Google Scholar 

  • Sobel, L. (1970). Camera models and machine perception, PhD Thesis, Stanford University, Stanford, CA. USA

    Google Scholar 

  • Yamaguchi, T. and Hashimoto, S. (2010). “Fast crack detection method for large-size concrete surface images using percolation-based image processing.” Machine Vision and Applications, Vol. 21, pp. 797–809, DOI: 10.1007/s00138-009-0189-8.

    Article  Google Scholar 

  • Zhang, W. T., Dai, J. Y., Xu, H., Sun, B. C., and Du, Y. L. (2007). “Distributed fiber optic crack sensor for concrete structures.” Proc. of SPIE, Sandiego, USA, Vol. 6830, pp. 68300F, DOI: 10.1117/12.757864.

    Article  Google Scholar 

  • Zhang, Z. Y. (2000). “A flexible new technique for camera calibration.” IEEE Transactions on. Pattern Analysis Machine Intelligence, Vol. 22, No. 11, pp. 1330–34, DOI: 10.1109/34.888718.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Shan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, B., Zheng, S. & Ou, J. A stereovision-based crack width detection approach for concrete surface assessment. KSCE J Civ Eng 20, 803–812 (2016). https://doi.org/10.1007/s12205-015-0461-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-015-0461-6

Keywords

Navigation