Skip to main content
Log in

Engineering properties and microstructural characteristics of foundation silt stabilized by lignin-based industrial by-product

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

This paper presents details of a study that deals with determination of engineering properties and microstructural characteristics of a foundation soil (silt) sedimented in Jiangsu Province of China when it is stabilized by lignin-based industrial by-product. A series of laboratory tests were carried out with respect to evaluate the effect of lignin content and curing time on the overall soil properties including Atterberg limits, pH, unconfined compressive strength, stress-strain characteristics, secant modulus, and California bearing ratio. In addition, scanning electron microscopy, X-ray diffraction, and mercury intrusion porosimetry studies were conducted to understand the microstructural characteristics and stabilization mechanism of the stabilized silt. The results reveal that lignin has a great potential to improve engineering properties of silt and shows a promising prospect as a new environmentally friendly soil stabilizer. Curing time and lignin content have significant influence on the basic engineering properties and microstructural characteristics of the lignin stabilized silt. The optimum content of lignin for foundation silt in Jiangsu Province of China is approximately 12%. The precipitated cementing material is formed after stabilization of lignin with a period of curing. The stabilized silt switches over its response from a brittle to ductile material in the presence of lignin. Peak analysis results of the pore-size distribution curves demonstrates that the lignin stabilized silt exhibits bimodal behavior when the lignin content less than 8%, whereas it displays unimodal type when the lignin content is more than or equal to 8%. These observations provide enhanced understanding of lignin-based industrial by-product as a soil stabilizer at the foundation construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • ASTM D4972 (2001). Standard test method for pH of soils, ASTM International, West Conshohocken, PA, USA.

    Google Scholar 

  • ASTM D698-07 (2007). Standard test methods for laboratory compaction characteristics of soil using standard effort [12,400 ft-lb/ft 3 (600 kNm/m 3 )]. ASTM International, West Conshohocken, PA, USA.

    Google Scholar 

  • ASTM D4219 (2008). Standard test method for unconfined compressive strength index of chemical-grouted soils, ASTM International, West Conshohocken, PA, USA.

    Google Scholar 

  • ASTM D2487 (2011). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA, USA.

    Google Scholar 

  • Bell, F. G. (1996). “Lime stabilization of clay minerals and soils.” Engineering Geology, Vol. 42, No. 4, pp. 223–237, DOI: 10.1016/0013-7952(96)00028-2.

    Article  Google Scholar 

  • Blanck, G., Cuisinier, O., and Masrouri, F. (2013). “Soil treatment with organic non-traditional additives for the improvement of earthworks.” Acta Geotechnica, pp. 1–12, DOI: 10.1007/s11440-013-0251-6.

    Google Scholar 

  • Cai, G., Liu, S., and Puppala, A. J. (2011). “Comparison of CPT charts for soil classification using PCPT data: Example from clay deposits in Jiangsu Province, China.” Engineering Geology, Vol. 121, No. 1, pp. 89–96, DOI: 10.1016/j.enggeo.2011.04.016.

    Article  Google Scholar 

  • Cai, G., Zhang, T., Puppala, A. J., and Liu, S. (2015). “Thermal characterization and prediction model of typical soils in Nanjing area of China.” Engineering Geology, Vol. 191, pp. 23–30, DOI: 10.1015/j.enggeo.2015.03.005.

    Article  Google Scholar 

  • Ceylan, H., Gopalakrishnan, K., and Kim, S. (2010). “Soil stabilization with bioenergy coproduct.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 2186, No. 1, pp. 130–137, DOI: 10.3141/2186-14.

    Article  Google Scholar 

  • Chen, B. (2004). “Polymer-clay nanocomposites: An overview with emphasis on interaction mechanisms.” British Ceramic Transactions, Vol. 103, No. 6, pp. 241–249, DOI: 10.1179/096797804X4592.

    Article  Google Scholar 

  • Chen, Q. and Indraratna, B. (2014). “Deformation behavior of lignosulfonate-treated sandy silt under cyclic loading.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, No. 1, pp. 06014015.1-5, DOI: 10.1061/(ASCE)GT.1943-5606.0001210.

    Google Scholar 

  • Chen, Q., Indraratna, B., Carter, J., and Rujikiatkamjorn, C. (2014). “A theoretical and experimental study on the behaviour of lignosulfonatetreated sandy silt.” Computers and Geotechnics, No. 61, pp. 316–327, DOI: 10.1016/j.compgeo.2014.06.010.

    Article  Google Scholar 

  • Consoli, N. C., Prietto, P. D., and Ulbrich, L. A. (1998). “Influence of fiber and cement addition on behavior of sandy soil.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 12, pp. 1211–1214, DOI: 10.1061/(ASCE)1090-0241(1998)124:12(1211).

    Article  Google Scholar 

  • Cuisinier, O., Auriol, J. C., Le, Borgne. T., and Deneele, D. (2011). “Microstructure and hydraulic conductivity of a compacted limetreated soil.” Engineering Geology, Vol. 123, No. 3, pp. 187–193, DOI: 10.1016/j.enggeo.2011.07.010.

    Article  Google Scholar 

  • Ghosh, A. and Subbarao, C. (2006). “Tensile strength bearing ratio and slake durability of class F fly ash stabilized with lime and gypsum.” Journal of Materials in Civil Engineering, Vol. 18, No. 1, pp. 18–27, DOI: 10.1061/(ACE)0899-561(2006)18:1(18).

    Article  Google Scholar 

  • Gow, A. J., Davidson, D. T., and Sheeler, J. B. (1961). “Relative Effects of Chlorides, Lignosulfonates and Molasses on Properties of a Soil-Aggregate Mix.” Highway Research Board Bulletin, No. 282, pp. 66–83.

    Google Scholar 

  • Hebib, S. and Farrell, E. R. (2003). “Some experiences on the stabilization of Irish peats.” Canadian Geotechnical Journal, Vol. 40, No. 1, pp. 107–120, DOI: 10.1139/T02-091.

    Article  Google Scholar 

  • Indraratna, B., Athukorala, R., and Vinod, J. (2012). “Estimating the rate of erosion of a silty sand treated with lignosulfonate.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 139, No. 5, pp. 701–714, DOI: 10.1061/(ASCE)GT.1943-5606.0000766.

    Article  Google Scholar 

  • Indraratna, B., Muttuvel, T., and Khabbaz, H. (2009). “Modelling the erosion rate of chemically stabilized soil incorporating tensile forcedeformation characteristics.” Canadian Geotechnical Journal, Vol. 46, No. 1, pp. 57–68, DOI: 10.1139/T08-103.

    Article  Google Scholar 

  • Indraratna, B., Muttuvel, T., Khabbaz, H., and Armstrong, R. (2008). “Predicting the erosion rate of chemically treated soil using a process simulation apparatus for internal crack erosion.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 134, No. 6, pp. 837–844, DOI: 10.1061/(ASCE)1090-0241(2008)134:6(837).

    Article  Google Scholar 

  • Jiang, T. D. (2008). Lignin, Chemical Industry Press, Beijing.

    Google Scholar 

  • Juang, C. H. and Holtz, R. D. (1986). “Fabric, pore size distribution, and permeability of sandy soils.” Journal of Geotechnical Engineering, Vol. 112, No. 9, pp. 855–868, DOI: 10.1061/(ASCE)0733-9410(1986)112:9(855).

    Article  Google Scholar 

  • Karol, R. H. (2003). Chemical grouting and soil stabilization (3rd ed.), Marcel Dekker Inc., New York.

    Book  Google Scholar 

  • Kim, S., Gopalakrishnan, K., and Ceylan, H. (2011). “Moisture susceptibility of subgrade soils stabilized by lignin-based renewable energy coproduct.” Journal of Transportation Engineering, Vol. 138, No. 11, pp. 1283–1290, DOI: 10.1061/(ASCE)TE.1943-5436.0000097.

    Article  Google Scholar 

  • Lefebvre, G. Z. and Rochelle, P. L. (1974). “The analysis of two slope failures in cemented Champlain clays.” Canadian Geotechnical Journal, Vol. 11, No. 1, pp. 89–108, DOI: 10.1139/T74-007.

    Article  Google Scholar 

  • Li, X. and Zhang, L. M. (2009). “Characterization of dual-structure pore-size distribution of soil.” Canadian Geotechnical Journal, Vol. 46, No. 2, pp. 129–141, DOI: 10.1139/T08-110.

    Article  Google Scholar 

  • Locat, J., Bérubé, M. A., and Choquette, M. (1990). “Laboratory investigations on the lime stabilization of sensitive clays: Shear strength development.” Canadian Geotechnical Journal, Vol. 27, No. 3, pp. 294–304, DOI: 10.1139/T90-040.

    Article  Google Scholar 

  • Mitchell, J. K. and Soga, K. (1976). Fundamentals of soil behavior. John Wiley and Sons, Inc., New York.

    Google Scholar 

  • Nalbantoglu, Z. and Tuncer, E. R. (2001). “Compressibility and hydraulic conductivity of a chemically treated expansive clay.” Canadian Geotechnical Journal, Vol. 38, No. 1, pp. 154–160, DOI: 10.1139/cgj-38-1-154.

    Google Scholar 

  • Okagbue, C. O. (2007). “Stabilization of clay using woodash.” Journal of Materials in Civil Engineering, Vol. 19, No. 1, pp. 14–18, DOI: 10.1061/(ASCE)0899-1561(2007)19:1(14).

    Article  Google Scholar 

  • Perry, J. P. (1977). “Lime treatment of dams constructed with dispersive clay soils.” Transactions of the American Society of Agricultural Engineers, Vol. 20, No. 6, pp. 1093–1099, DOI: 10.13031/2013.35709.

    Article  Google Scholar 

  • Puppala, A. J. and Hanchanloet, S. (1999). Evaluation of a new chemical (SA-44/LS-40) treatment method on strength and resilient properties of a cohesive soil. 78th Annual Meeting of the Transportation Research Board, Washington, DC, Paper No.990389.

    Google Scholar 

  • Puppala, A. J., Griffin, J. A., Hoyos, L. R., and Chomtid, S. (2004). “Studies on sulfate-resistant cement stabilization methods to address sulfate-induced soil heave.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 4, pp. 391–402, DOI: 10.1061/(ASCE)1090-0241(2004)130:4(391).

    Article  Google Scholar 

  • Rollings, R. S. and Burkes, J. P. (1999). “Sulfate attack on cement–stabilized sand.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 5, pp. 364–372, DOI: 10.1061/(ASCE)1090-0241(1999)125:5(364).

    Article  Google Scholar 

  • Santoni, R. L., Tingle, J. S., and Nieves, M. (2005). “Accelerated strength improvement of silty sand with nontraditional additives.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 1936, No. 1, pp. 34–42, DOI: 10.3141/1936-05.

    Article  Google Scholar 

  • Santoni, R. L., Tingle, J. S., and Webster, S. L. (2002). “Stabilization of silty sand with nontraditional additives.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 1787, No. 1, pp. 61–70, DOI 10.3141/1787-07.

    Article  Google Scholar 

  • Sariosseiri, F., and Muhunthan, B. (2009). “Effect of cement treatment on geotechnical properties of some Washington State soils.” Engineering Geology, Vol. 104, No. 1, pp. 119–125, DOI: 10.1016/j.enggeo.2008.09.003.

    Article  Google Scholar 

  • Sherwood, P. (1993). Soil stabilization with cement and lime: State-ofthe-art review. Transport Research Laboratory, Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Simms, P. H. and Yanful, E. K. (2001). “Measurement and estimation of pore shrinkage and pore distribution in a clayey till during soil-water characteristic curve tests.” Canadian Geotechnical Journal, Vol. 38, No. 4, pp. 741–754, DOI: 10.1139/cgj-38-4-741.

    Article  Google Scholar 

  • Tang, Y. X., Liu, H. L., and Zhu, W. (2000). “Study on engineering properties of cement-stabilized soil.” Chinese Journal of Geotechnical Engineering, Vol. 22, No. 5, pp. 549–554, DOI: 10.3321/j.issn:1000-4548.2000.05.008.

    Google Scholar 

  • Tingle, J. S., Newman, J. K., Larson, S. L., Weiss, C. A., and Rushing, J. F. (2007). “Stabilization mechanisms of nontraditional additives.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 1989, No. 1, pp. 59–67, DOI: 10.3141/1989-49.

    Article  Google Scholar 

  • Tingle, J. S. and Santoni, R. L. (2003). “Stabilization of clay soils with nontraditional additives.” Transportation Research Record: Journal of the Transportation Research Board, Vol. 1819, No. 1, pp. 72–84, DOI: 10.3141/1819b-10.

    Article  Google Scholar 

  • Tremblay, H., Duchesne, J., Locat, J., and Leroueil, S. (2002). “Influence of the nature of organic compounds on fine soil stabilization with cement.” Canadian Geotechnical Journal, Vol. 39, No. 3, pp. 535–546, DOI: 10.1139/T02-002.

    Article  Google Scholar 

  • Vinod, J. S., Indraratna, B., and Mahamud, M. A. A. (2010). “Stabilisation of an erodible soil using a chemical admixture.” Proceedings of the ICE: Ground Improvement, Vol. 163, No. 1, pp. 43–51, DOI: 10.1680/grim.2010.163.1.43.

    Google Scholar 

  • Washburn, E W. (1921). Note on a method of determining the distribution of pore sizes in a porous material. Proceedings of the National Academy of Sciences of the United States of America, pp. 115–116, DOI: 10.1073/pnas.7.4.115.

    Google Scholar 

  • Xiao, J., Juang, C. H., Xu, C., Li, X., and Wang, L. (2014). “Strength and deformation characteristics of compacted silt from the lower reaches of the Yellow River of China under monotonic and repeated loading.” Engineering Geology, No. 178, pp. 49–57, DOI: 10.1016/j.enggeo.2014.06.008.

    Article  Google Scholar 

  • Yao, M., Sun, R. J., Chen, M. Y., and Lai, K. (2009). “Development and utilization of plant cellulouse, lignin and hemicelluloses and so on.” Fine Chemicals, Vol. 26, No. 10, pp. 938–942, DOI: 10.13550/j.jxhg.2009.10.002.

    Google Scholar 

  • Zhang, L. M., and Li, X. (2010). “Microporosity structure of coarse granular soils.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 136, No. 10, pp. 1425–1436, DOI: 10.1061/(ASCE)GT.1943-5606.0000348.

    Article  Google Scholar 

  • Zhang, T., Liu, S., Cai, G., and Puppala, A. J. (2014). “Study on strength characteristics and microcosmic mechanism of silt improved by lignin-based bio-energy coproducts.” ASCE Specialty Conference on Geo-Shanghai 2014: Ground Improvement and Geosynthetics, Shanghai, pp. 220–230, DOI: 10.1061/9780784413401.022.

    Chapter  Google Scholar 

  • Zhang, T., Liu, S., Cai, G., and Puppala, A. J. (2015b). “Experimental investigation of thermal and mechanical properties of lignin treated silt.” Engineering Geology, Vol. 196, pp. 1–11, DOI: 10.1016/j.enggeo.2015.07.003.

    Article  Google Scholar 

  • Zhang, T., Liu, S., Cai, G. Li, J., and Jie, D. (2015a). “Experimental study on relationship between thermal and mechanical properties of treated silt by lignin.” Chinese Journal of Geotechnical Engineering, Vol. 37, No. 10, pp. 1876–1793, DOI: 10.11779/CJGE201510016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojun Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Cai, G., Liu, S. et al. Engineering properties and microstructural characteristics of foundation silt stabilized by lignin-based industrial by-product. KSCE J Civ Eng 20, 2725–2736 (2016). https://doi.org/10.1007/s12205-016-1325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-1325-4

Keywords

Navigation