Skip to main content
Log in

Lean Precast Production System based on the CONWIP Method

  • Construction Management
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

To enhance the level of precast production management, and to reduce the costs of precast production, a lean precast production system is developed based on the constant work-in-process (CONWIP) method. Then the performance of this system is verified using the Discrete Event Simulation (DES). A quantitative performance evaluation between the lean precast production system and the current precast production process is provided using the JaamSim simulation platform. Cases and site visits to precast concrete plant in China are combined to collect the production procedures and initial parameters involved in precast production. Through simulations, Non-value Adding (NVA) activities, as well as bottleneck workstations, are identified in precast production. The optimal number of cards to be used in the lean precast production system is also presented. Our simulation experiments show that the lean precast production system provides an effective way to control queue length and shorten the WIP and cycle time, while also maintaining throughput and saving 25.4% of labour cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ajorlou, S., Shams, I., and Aryanezhad, M. G. (2011). “A genetic algorithm approach for multi-product multi-machine CONWIP production system.” Applied Mechanics and Materials, pp. 110–116, pp. 3624–3630, DOI: 10.4028/www.scientific.net/AMM.110-116.3624.

    Google Scholar 

  • Azam Haron, N., Abdul-Rahman, H., Wang, C., and Wood, L. C. (2015). “Quality function deployment modelling to enhance industrialised building system adoption in housing projects.” Total Quality Management & Business Excellence, vol. 26, Nos. 7–8, pp. 703–718, DOI: 10.1080/14783363.2014.880626.

    Article  Google Scholar 

  • Benjaoran, V., Dawood, N., and Hobbs, B. (2005). “Flowshop scheduling model for bespoke precast concrete production planning.” Construction Management and Economics, vol. 23, no. 1, pp. 93–105, DOI: 10.1080/0144619042000287732.

    Article  Google Scholar 

  • Braglia, M., Frosolini, M., Gabbrielli, R., and Zammori, F. (2011). “CONWIP card setting in a flow-shop system with a batch production machine.” International Journal of Industrial Engineering Computations, vol. 2, no. 1, pp. 1–18, DOI: 10.5267/j.ijiec.2010. 07.004.

    Article  Google Scholar 

  • Chan, W.-H. and Lu, M. (2008). “Materials handling system simulation in precast viaduct construction: Modeling, analysis, and Implementation.” Journal of Construction Engineering and Management, Vol. 134, No. April, pp. 300–310, DOI: 10.1061/(ASCE)0733-9364(2008) 134:4(300).

    Article  Google Scholar 

  • Chen, J.-H. H., Yang, L.-R. R., and Tai, H.-W. W. (2016). “Process reengineering and improvement for building precast production.” Automation in Construction, vol. 68, pp. 249–258, DOI: 10.1016/j.autcon.2016.05.015.

    Article  Google Scholar 

  • Cochran, J. K. and Kaylani, H. A. (2008). “Optimal design of a hybrid push/pull serial manufacturing system with multiple part types.” International Journal of Production Research, vol. 46, no. 4, pp. 949–965, DOI: 10.1080/00207540600905547.

    Article  MATH  Google Scholar 

  • Gallardo, C., Granja, A., and Picchi, F. (2014). “Productivity gains in a line flow precast concrete process after a basic stability effort.” Journal of Construction Engineering and Management, Vol. 140, No. 4, B4013004-1-8, DOI: 10.1061/(ASCE)CO.1943-7862.0000728.

    Google Scholar 

  • Harrison, H. S. and Street, H. (2013). “Open source simulation Software ‘JAAMSIM’.” Proceedings-Winter Simulation Conference, pp. 2163–2171, DOI: 10.1109/WSC.2013.6721593.

    Google Scholar 

  • Hopp, W. J. and Spearman, M. L. (1996). Factory physics. Business Logistics. Chicago: Irwin.

    Google Scholar 

  • Jahangirian, M., Eldabi, T., Naseer, A., Stergioulas, L. K., and Young, T. (2010). “Simulation in manufacturing and business: A review.” European Journal of Operational Research, vol. 203, no. 1, pp. 1–13, DOI: 10.1016/j.ejor.2009.06.004.

    Article  Google Scholar 

  • Jain, S. and Foley, W. J. (2016). “Dispatching strategies for managing uncertainties in automated manufacturing systems.” European Journal of Operational Research, vol. 248, no. 1, pp. 328–341, DOI: 10.1016/j.ejor.2015.06.060.

    Article  MATH  Google Scholar 

  • Khalili, a. and Chua, D. K. (2014). “Integrated prefabrication configuration and component grouping for resource optimization of precast production.” Journal of Construction Engineering and Management, Vol. 140, No. 2, 4013052, DOI: 10.1061/(ASCE)CO.1943-7862. 0000798.

  • Ko, C.-H. and Wang, S.-F. (2011). “Precast production scheduling using multi-objective genetic algorithms.” Expert Systems with Applications, vol. 38, no. 7, pp. 8293–8302, DOI: 10.1016/j.eswa.2011.01.013.

    Article  Google Scholar 

  • Ko, C. H. and Wang, S. F. (2010). “GA-based decision support systems for precast production planning.” Automation in Construction, vol. 19, no. 7, pp. 907–916, DOI: 10.1016/j.autcon.2010.06.004.

    Article  Google Scholar 

  • Ko, C. and Wang, S. (2013). Arranging precast production schedules using genetic algorithms, (Eppm), 784–794.

    Google Scholar 

  • Korugan, A. and Gupta, S. M. (2014). “An adaptive CONWIP mechanism for hybrid production systems.” International Journal of Advanced Manufacturing Technology, vol. 74, Nos. 5–8, pp. 715–727, DOI: 10.1007/s00170-014-5977-2.

    Article  Google Scholar 

  • Koskela, L. (2000). “An exploration towards a production theory and its application to construction.” D. Tech thesis, Helsinki University of Technology, Espoo, 296, available at http://www.inf.vtt.fi/pdf/publications/2000/P408.pdf.

  • Koulouriotis, D. E., Xanthopoulos, A. S., and Tourassis, V. D. (2010). “Simulation optimisation of pull control policies for serial manufacturing lines and assembly manufacturing systems using genetic algorithms.” International Journal of Production Research, vol. 48, no. 10, pp. 2887–2912, DOI: 10.1080/00207540802603759.

    Article  MATH  Google Scholar 

  • Lu, W., Olofsson, T., and Segerstedt, A. (2010). “Application of discrete event simulation and conwip on inventory control.” (1999), pp. 16–18.

    Google Scholar 

  • Najafi, A. L. I. and Tiong, R. (2015). Simulation as a Tool for Productivity Modeling of Precast Concrete Installation, vol. 10, no. 1, pp. 1–7.

    Google Scholar 

  • Nath, T., Attarzadeh, M., Tiong, R. L. K., Chidambaram, C., & Yu, Z. (2015). “Productivity improvement of precast shop drawings generation through BIM-based process re-engineering.” Automation in Construction, vol. 54, pp. 54–68, DOI: 10.1016/j.autcon.2015.03.014.

    Article  Google Scholar 

  • Nawi, M., Lee, A., and Nor, K. (2011). “Barriers to implementation of the Industrialised Building System (IBS) in Malaysia.” The Built & Human Environment Review, Vol. 4(November), pp. 22–35, http://tbher.org/index.php/tbher/article/view/64.

    Google Scholar 

  • Nazarian, E. and Ko, J. (2013). “Robust manufacturing line design with controlled moderate robustness in bottleneck buffer time to manage stochastic inter-task times.” Journal of Manufacturing Systems, vol. 32, no. 2, pp. 382–391, DOI: 10.1016/j.jmsy.2012.12.005.

    Article  Google Scholar 

  • Nelson, B. L. and Matejcik, F. J. (1995). “Using common random numbers for indifference-zone selection and multiple comparisons in simulation.” Management Science, vol. 41, no. 12, pp. 1935–1945, DOI: 10.1287/mnsc.41.12.1935.

    Article  MATH  Google Scholar 

  • Pan, W., Gibb, A. G. F., and Dainty, A. R. J. (2007). “Perspectives of UK housebuilders on the use of offsite modern methods of construction.” Construction Management and Economics, vol. 25, no. 2, pp. 183–194, DOI: 10.1080/01446190600827058.

    Article  Google Scholar 

  • Pedrielli, G., Alfieri, A., and Matta, A. (2015). “Integrated simulation–optimisation of pull control systems.” International Journal of Production Research, Vol. 7543, (February 2015), pp. 1–20, DOI: 10.1080/00207543.2014.997404.

    MATH  Google Scholar 

  • Prakash, J. and Chin, J. F. (2014). Modified CONWIP systems: A review and classification.” Production Planning & Control: The Management of Operations, Vol. 7287, (March), pp. 1–12, DOI: 10.1080/09537287.2014.898345.

    Article  Google Scholar 

  • Renna, P., Magrino, L., and Zaffina, R. (2013). “Dynamic card control strategy in pull manufacturing systems.” International Journal of Computer Integrated Manufacturing, vol. 26, no. 9, pp. 881–894, DOI: 10.1080/0951192X.2013.799783.

    Article  Google Scholar 

  • Spearman, M. L., Woodruff, D. L., and Hopp, W. J. (1990).“ CONWIP, a pull alternative to kanban.” International Journal of Production Research, DOI: 10.1080/00207549008942761.

    Google Scholar 

  • Tommelein, I. D. (2015). “Journey toward Lean Construction: Pursuing a Paradigm Shift in the AEC Industry.” Journal of Construction Engineering and Management, vol. 141, no. 1970, pp. 1–12, DOI: 10.1061/(ASCE)CO.1943-7862.0000926.

    Google Scholar 

  • Wang, C., Liu, M., Asce, A. M., Hsiang, S. M., Leming, M. L., and Asce, M. (2013). “Causes and penalties of variation: case study of a precast concrete slab production facility.” Journal of Construction Engineering and Management, Vol. 138, March, pp. 1–12, DOI: 10.1061/(ASCE)CO.1943-7862.

    Google Scholar 

  • Wu, P., Low, S. P., and Jin, X. (2013). “Identification of Non-value Adding (NVA) activities in precast concrete installation sites to achieve low-carbon installation.” Resources, Conservation and Recycling, Vol. 81, November, pp. 60–70, DOI: 10.1016/j.resconrec. 2013.09.013.

    Article  Google Scholar 

  • Xanthopoulos, A. S. and Koulouriotis, D. E. (2014). “Multi-objective optimization of production control mechanisms for multi-stage serial manufacturing-inventory systems.” International Journal of Advanced Manufacturing Technology, vol. 74, Nos. 9–12, pp. 1507–1519, DOI: 10.1007/s00170-014-6052-8.

    Article  Google Scholar 

  • Zabihi, H., Habib, F., and Mirsaeedie, L. (2013). “Definitions, concepts and new directions in Industrialized Building Systems (IBS).” KSCE Journal of Civil Engineering, vol. 17, no. 6, pp. 1199–1205, DOI: 10.1007/s12205-013-0020-y.

    Article  Google Scholar 

  • Zhai, X., Tiong, R. L. K., Bjornsson, H. C., and Chua, D. K. H. (2008). “Simulation-based planning for precast production with two critical resources.” Proceedings-Winter Simulation Conference, (1996), pp. 2519–2526, DOI: 10.1109/WSC.2008.4736362.

    Google Scholar 

  • Zhang, X., Skitmore, M., and Peng, Y. (2014). “Exploring the challenges to industrialized residential building in China.” Habitat International, vol. 41, pp. 176–184, DOI: 10.1016/j.habitatint.2013.08.005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangdong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Z. & Wu, G. Lean Precast Production System based on the CONWIP Method. KSCE J Civ Eng 22, 2167–2177 (2018). https://doi.org/10.1007/s12205-017-2009-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-2009-4

Keywords

Navigation