Skip to main content
Log in

Investigation of Stability and Failure Mechanism of Undercut Slopes by Three-Dimensional Finite Element Analysis

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Slope failures along a bedding plane were critical issues and mostly happened in an open pit mining project such as the Mae Moh Mine, Thailand. The prediction of maximum width to maintain stable slope after an excavation process is required. This paper presents an investigation of 3D finite element analysis for the stability and failure mechanism of undercut slopes resting on a low interface friction plane. In numerical models, the soil slope was modeled as volume elements with the hardening soil material. Interface elements were used at the bottom plane to simulate the low interface friction plane and at the side support to simulate fully rough surface for the models with side supports. Stage analyses in numerical models were performed following excavation processes in physical models until failure. The effects of the side support and the slope length to increase the stability of undercut slopes were considered. Failure widths, failure mechanisms, and stress distributions associated with slope angles and boundary conditions of side support were discussed and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alkasawneh, W., Malkawi, A. I. H., Nusairat, J. H., and Albataineh, N. (2008). “A comparative study of various commercially available programs in slope stability analysis.” Computers and Geotechnics, Vol. 35, No. 3, pp. 428–435, DOI: 10.1016/j.compgeo.2007.06.009.

    Article  Google Scholar 

  • Areias, P., Msekh, M. A., and Rabczuk, T. (2016). “Damage and fracture algorithm using the screened Poisson equation and local remeshing.” Engineering Fracture Mechanics, Vol. 158, pp. 116–143, DOI: 10.1016/j.engfracmech.2015.10.042.

    Article  Google Scholar 

  • Areias, P., Reinoso, J., Camanho, P., and Rabczuk, T. (2015). “A constitutivebased element-by-element crack propagation algorithm with local mesh refinement.” Computational Mechanics, Vol. 56, No. 2, pp. 291–315, DOI: 10.1007/s00466-015-1172-z.

    Article  MathSciNet  MATH  Google Scholar 

  • Areias, P., Rabczuk, T., and Camanho, P. P. (2014). “Finite strain fracture of 2D problems with injected anisotropic softening elements.” Theoretical and Applied Fracture Mechanics, Vol. 72, pp. 50–63, DOI: 10.1016/ j.tafmec.2014.06.006.

    Article  Google Scholar 

  • Areias, P., Rabczuk, T., and Dias-da-Costa, D. (2013). “Element-wise fracture algorithm based on rotation of edges.” Engineering Fracture Mechanics, Vol. 110, pp. 113–137, 10.1016/j.engfracmech.2013.06.006.

    Article  MATH  Google Scholar 

  • Brinkgreve, R., Swolfs, W., Engin, E., Waterman, D., Chesaru, A., Bonnier, P., and Galavi, V. (2013). PLAXIS 3D Reference Manual.

    Google Scholar 

  • Cha, K. S. and Kim, T. H. (2011). “Evaluation of slope stability with topography and slope stability analysis method.” KSCE Journal of Civil Engineering, Vol. 15, No. 2, pp. 251–256, DOI: 10.1007/ s12205-011-0930-5.

    Article  Google Scholar 

  • Chen, Z., Mi, H., Zhang, F., and Wang, X. (2003). “A simplified method for 3D slope stability analysis.” Canadian Geotechnical Journal, Vol. 40, No. 3, pp. 675–683, DOI: 10.1139/t03-002.

    Article  Google Scholar 

  • Chen, Z., Wang, X., Haberfield, C., Yin, J.-H., and Wang, Y. (2001a). “A three-dimensional slope stability analysis method using the upper bound theorem: Part I: theory and methods.” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 369–378, DOI: 10.1016/s1365-1609(01)00012-0.

    Article  Google Scholar 

  • Chen, Z., Wang, J., Wang, Y., Yin, J.-H., and Haberfield, C. (2001b). “A three-dimensional slope stability analysis method using the upper bound theorem Part II: Numerical approaches, applications and extensions.” International Journal of Rock Mechanics and Mining Sciences, Vol. 38, No. 3, pp. 379–397, DOI: 10.1016/s1365-1609 (01)00013-2.

    Article  Google Scholar 

  • Cheng, Y., Lansivaara, T., and Wei, W. (2007). “Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods.” Computers and Geotechnics, Vol. 34, No. 3, pp. 137–150, DOI: 10.1016/j.compgeo.2006.10.011.

    Article  Google Scholar 

  • Drucker, D. C., Prager, W., and Greenberg, H. J. (1952). “Extended limit design theorems for continuous media.” Quarterly of Applied Mathematics, Vol. 9, No. 4, pp. 381–389.

    Article  MathSciNet  MATH  Google Scholar 

  • Duncan, J. M. (1996). “State of the art: limit equilibrium and finiteelement analysis of slopes.” Journal of Geotechnical Engineering, Vol. 122, No. 7, pp. 577–596, DOI: 10.1061/(asce)0733-9410(1996) 122:7(577).

    Article  Google Scholar 

  • Eid, H. T. (2014). “Stability charts for uniform slopes in soils with nonlinear failure envelopes.” Engineering Geology, Vol. 168, pp. 38–45, DOI: 10.1016/j.enggeo.2013.10.021.

    Article  Google Scholar 

  • Griffiths, D. and Lane, P. (1999). “Slope stability analysis by finite elements.” Geotechnique, Vol. 49, No. 3, pp. 387–403, DOI: 10.1680/geot. 51.7.653.51390.

    Article  Google Scholar 

  • Hashash, Y. M. and Whittle, A. J. (1996). “Ground movement prediction for deep excavations in soft clay.” Journal of Geotechnical Engineering, Vol. 122, No. 6, pp. 474–486, DOI: 10.1061/(asce)0733-9410(1996) 122:6(474).

    Article  Google Scholar 

  • Kahyaoglu, M. R., Imançli, G., Önal, O., and Kayalar A. S. (2012). “Numerical analyses of piles subjected to lateral soil movement.” KSCE Journal of Civil Engineering, Vol. 16, No. 4, pp. 562–570, DOI: 10.1007/s12205-012-1354-6.

    Article  Google Scholar 

  • Kelesoglu, M. K. (2016). “The evaluation of three-dimensional effects on slope stability by the strength reduction method.” KSCE Journal of Civil Engineering, Vol. 20, No. 1, pp. 229–242, DOI: 10.1007/ s12205-015-0686-4.

    Article  Google Scholar 

  • Khosravi, M. H. (2012). “Arching effect in geomaterials with applications to retaining walls and undercut slopes.” (Doctor of Philosophy), Tokyo Institute of Technology, Japan.

    Google Scholar 

  • Khosravi, M. H., Pipatpongsa, T., Takahashi, A., and Takemura, J. (2011). “Arch action over an excavated pit on a stable scarp investigated by physical model tests.” Soils and foundations, Vol. 51, No. 4, pp. 723–735, DOI: 10.3208/sandf.51.723.

    Article  Google Scholar 

  • Khosravi, M. H., Tang, L., Pipatpongsa, T., Takemura, J., and Doncommul, P. (2012). “Performance of counterweight balance on stability of undercut slope evaluated by physical modeling.” International Journal of Geotechnical Engineering, Vol. 6, No. 2, pp. 193–205, DOI: 10.3328/ijge.2012.06.02.193-205.

    Article  Google Scholar 

  • Kwok, O. L. A., Guan, P. C., Cheng, W. P., and Sun, C. T. (2015). “Semi-Lagrangian reproducing kernel particle method for slope stability analysis and post-failure simulation.” KSCE Journal of Civil Engineering, Vol. 19, No. 1, pp. 107–115, DOI: 10.1007/ s12205-013-0550-3.

    Article  Google Scholar 

  • Likitlersuang, S., Surarak, C., Wanatowski, D., Oh, E., and Balasubramaniam, A. (2013). “Finite element analysis of a deep excavation: A case study from the Bangkok MRT.” Soils and foundations, Vol. 53, No. 5, pp. 756–773, DOI: 10.1016/j.sandf.2013.08.013.

    Article  Google Scholar 

  • Lin, H. and Cao, P. (2014). “A dimensionless parameter determining slip surfaces in homogeneous slopes.” KSCE Journal of Civil Engineering, Vol. 18, No. 2, pp. 470–474, DOI: 10.1007/s12205-014-0402-9.

    Article  Google Scholar 

  • Liu, Y., He, Z., Li, B., and Yang, Q. (2013). “Slope stability analysis based on a multigrid method using a nonlinear 3D finite element model.” Frontiers of Structural and Civil Engineering, Vol. 7, No. 1, pp. 24–31, DOI: 10.1007/s11709-013-0190-1.

    Article  Google Scholar 

  • Ouch, R., Ukritchon, B., and Pipatpongsa, T. (2016a). “Stability of soil block on low interface friction plane with and without side supports.” Engineering Journal, Vol. 20, No. 2, pp. 123–145, DOI: 10.4186/ ej.2016.20.2.123.

    Article  Google Scholar 

  • Ouch, R., Ukritchon, B. and Pipatpongsa, T., and Khosravi, M. H. (2016b). “Experimental investigations of shear pin arrangement on soil slope resting on low interface friction plane.” Maejo International Journal of Science and Technology, Vol. 10, No. 3, pp. 313–329.

    Google Scholar 

  • Pipatpongsa, T., Khosravi, M., and Takemura, J. (2013). “Physical modeling of arch action in undercut slopes with actual engineering practice to Mae Moh open-pit mine of Thailand.” Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering (ICSMGE18), Paris.

    Google Scholar 

  • Rabczuk, T. and Areias, P. M. A. (2006). “A new approach for modelling slip lines in geological materials with cohesive models.” International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 30, No. 11, pp. 1159–1172, DOI: 10.1002/nag.522.

    Article  MATH  Google Scholar 

  • Rabczuk, T. and Belytschko, T. (2004). “Cracking particles: A simplified meshfree method for arbitrary evolving cracks.” International Journal for Numerical Methods in Engineering, Vol. 61, No. 13, pp. 2316–2343, DOI: 10.1002/nme.1151.

    Article  MATH  Google Scholar 

  • Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. (2010). “A simple and robust three-dimensional cracking-particle method without enrichment.” Computer Methods in Applied Mechanics and Engineering, Vol. 199, No. 37, pp. 2437–2455, DOI: 10.1016/j.cma.2010.03.031.

    Article  MATH  Google Scholar 

  • Regmi, R. K., Lee, G., and Jung, K. (2013). “Analysis on failure of slope and landslide dam.” KSCE Journal of Civil Engineering, Vol. 17, No. 5, pp. 1166–1178, DOI: 10.1007/s12205-013-0049-y.

    Article  Google Scholar 

  • Singh, V. P. and Babu, G. S. (2010). “2D numerical simulations of soil nail walls.” Geotechnical and Geological Engineering, Vol. 28, No. 4, pp. 299–309, DOI: 10.1007/s10706-009-9292-x.

    Article  Google Scholar 

  • Sloan, S. (2013). “Geotechnical stability analysis.” Geotechnique, Vol. 63, No. 7, pp. 531–571, DOI: 10.1680/geot.12.rl.001.

    Article  Google Scholar 

  • Surarak, C., Likitlersuang, S., Wanatowski, D., Balasubramaniam, A., Oh, E. and Guan, H. (2012). “Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays.” Soils and foundations, Vol. 52, No. 4, pp. 682–697, DOI: 10.1016/j.sandf. 2012.07.009.

    Article  Google Scholar 

  • Techawongsakorn, T., Hirai, H., Khosravi, M., and Pipatpongsa, T. (2013). Slip mechanisms and interface shear strength between moist silica sand and acrylic plate. Proceedings of the 48th Japan National Conference on Geotechnical Engineering, pp. 895–896.

    Google Scholar 

  • Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T., and Rabczuk, T. (2016). “A software framework for probabilistic sensitivity analysis for computationally expensive models.” Advances in Engineering Software, Vol. 100, pp. 19–31, DOI: 10.1016/j.advengsoft.2016.06.005.

    Article  Google Scholar 

  • Wu, J. J., Cheng, Q. G., Liang, X., and Cao, J. L. (2014). “Stability analysis of a high loess slope reinforced by the combination system of soil nails and stabilization piles.” Frontiers of Structural and Civil Engineering, Vol. 8, No. 3, pp. 252–259, DOI: 10.1007/s11709-014-0260-z.

    Article  Google Scholar 

  • Yang, Y.-c., Xing, H.-g., Yang, X.-g., Huang, K.-x., and Zhou, J.-w. (2015). “Two-dimensional stability analysis of a soil slope using the finite element method and the limit equilibrium principle.” The IES Journal Part A: Civil & Structural Engineering, Vol. 8, No. 4, pp. 1–14, DOI: 10.1080/19373260.2015.1072299.

    Google Scholar 

  • Yu, H., Salgado, R., Sloan, S., and Kim, J. (1998). “Limit analysis versus limit equilibrium for slope stability.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 124, No. 1, pp. 1–11, DOI: 10.1061/(ASCE)1090-0241(1998)124:1(1).

    Article  Google Scholar 

  • Zhu, H., Zhuang, X., Cai, Y., and Ma, G. (2011). “High rock slope stability analysis using the enriched meshless Shepard and least squares method.” International Journal of Computational Methods, Vol. 8, No. 2, pp. 209–228, DOI: 10.1142/S0219876211002551.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boonchai Ukritchon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ukritchon, B., Ouch, R., Pipatpongsa, T. et al. Investigation of Stability and Failure Mechanism of Undercut Slopes by Three-Dimensional Finite Element Analysis. KSCE J Civ Eng 22, 1730–1741 (2018). https://doi.org/10.1007/s12205-017-2011-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-017-2011-x

Keywords

Navigation