Skip to main content
Log in

Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning

  • Structural Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

During the long-term operation of hydro-junction infrastructure, water flow erosion causes concrete surfaces to crack, resulting in seepage, spalling, and rebar exposure. To ensure infrastructure safety, detecting such damage is critical. We propose a highly accurate damage detection method using a deep convolutional neural network with transfer learning. First, we collected images from hydro-junction infrastructure using a high-definition camera. Second, we preprocessed the images using an image expansion method. Finally, we modified the structure of Inception-v3 and trained the network using transfer learning to detect damage. The experiments show that the accuracy of the proposed damage detection method is 96.8%, considerably higher than the accuracy of a support vector machine. The results demonstrate that our damage detection method achieves better damage detection performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckman, G. H., Polyzois, D., and Cha, Y. J. (2019). “Deep learning-based automatic volumetric damage quantification using depth camera.” Automation in Construction, Elsevier, Vol. 99, No. 1, pp. 114–124, DOI: https://doi.org/10.1016/j.autcon.2018.12.006.

    Article  Google Scholar 

  • Cha, Y., J., Choi, W., and Büyüköztürk, O. (2017). “Deep learning-based crack damage detection using convolutional neural networks.” Computer-Aided Civil and Infrastructure Engineering, wiley, Vol. 32, No. 5, pp. 361–378, DOI: https://doi.org/10.1111/mice.12263.

    Article  Google Scholar 

  • Cha, Y. J., Choi, W., Suh, G., Mahmoudkhani, S., and Büyüköztürk, O. (2018). “Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types.” Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 33, No. 9, pp. 731–747, DOI: https://doi.org/10.1111/mice.12334.

    Article  Google Scholar 

  • Donahue, J., Jia, Yangqing., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T. (2013). “DeCAF: A deep convolutional activation feature for generic visual recognition.” arXiv:1310.1531v1.

  • Feng, C., Liu, M. Y., Kao, C. C., and Lee, T. Y. (2017). “Deep active learning for civil infrastructure defect detection and classification.” International Workshop on Computing in Civil Engineering 2017, ASCE, Seattle, Washington, pp. 298–306, DOI: https://doi.org/10.1061/9780784480823.036.

    Chapter  Google Scholar 

  • Gopalakrishnan, K., Khaitan, S. K., Choudhary, A., and Agrawal, A. (2017). “Deep convolutional neural networks with transfer learning for computer vision-based data-driven pavement distress detection.” Construction and Building Materials, Elsevier, Vol. 157, No. 1, pp. 322–330, DOI: https://doi.org/10.1016/j.conbuildmat.2017.09.110.

    Article  Google Scholar 

  • Gui, G., Pan, H., Lin, Z., Li, Y., and Yuan, Z. (2017). “Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection.” KSCE Journal of Civil Engineering, KSCE, Vol. 21, No. 2, pp. 523–534, DOI: https://doi.org/10.1007/s12205-017-1518-5.

    Article  Google Scholar 

  • Kang, D. and Cha, Y. J. (2018b). “Autonomous uavs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging.” Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 33, No. 10, pp. 885–902, DOI: https://doi.org/10.1111/mice.12375.

    Article  Google Scholar 

  • Kim, H., Ahn, E., Shin, M., and Sim, S, H. (2018). “Crack and noncrack classification from concrete surface images using machine learning.” Structural Health Monitoring, SAGE, Vol. 18, No. 3, pp. 725–738, DOI: https://doi.org/10.1177/1475921718768747.

    Article  Google Scholar 

  • Kim, H., Lee, J., Ahn, E., Cho, S., Shin, M., and Sim, S.-H. (2017). “Concrete crack identification using a uav incorporating hybrid image processing.” Sensors, MDPI, Vol. 17, No. 9, p. 2052, DOI: https://doi.org/10.3390/s17092052.

    Article  Google Scholar 

  • Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “Imagenet classification with deep convolutional neural networks.” In Advances in Neural Information Processing Systems, NIPS, USA, pp. 1097–1105, DOI: https://doi.org/10.1145/3065386.

    Google Scholar 

  • Lecun, Y. L., Bottou, L., and Bengio, Y. (1998). “Gradient-based learning applied to document recognition.” Proceedings of the IEEE, IEEE, Vol. 86, No. 11. pp. 2278–2324, DOI: https://doi.org/10.1109/9780470544976.ch9.

    Article  Google Scholar 

  • Li, X., Yang, Q., Chen, Z., Luo, X., and Yan, W. (2017). “Visible defects detection based on uav-based inspection in large-scale photovoltaic systems.” IET Renewable Power Generation, IET, Vol. 11, No. 10, pp. 1234–1244, DOI: https://doi.org/10.1049/iet-rpg.2017.0001.

    Article  Google Scholar 

  • Makantasis, K., Protopapadakis, E., Doulamis, A., Doulamis, N., and Loupos, C. (2015). “Deep convolutional neural networks for efficient vision based tunnel inspection.” IEEE International Conference on Intelligent Computer Communication and Processing, ICCP, Cluj-Napoca, Romania, pp. 335–342, DOI: https://doi.org/10.1109/iccp.2015.7312681.

    Google Scholar 

  • Nair, V. and Hinton, G. E. (2010). “Rectified linear units improve restricted Boltzmann machines.” Proc. of the 27th International Conference on Machine Learning., ICML, Haifa, Israel.

    Google Scholar 

  • Nasrollahi, A., Deng, W., Rizzo, P., Vuotto, A., and Vandenbossche, J. M. (2017). “Nondestructive testing of concrete using highly nonlinear solitary waves.” Nondestructive Testing and Evaluation, Taylor & Francis, Vol. 32, No. 4, pp. 381–399, DOI: https://doi.org/10.1080/10589759.2016.1254212.

    Article  Google Scholar 

  • Ng, C. T. (2014). “On the selection of advanced signal processing techniques for guided wave damage identification using a statistical approach.” Engineering Structures, Elsevier, Vol. 67, No. 1, pp. 50–60, DOI: https://doi.org/10.1016/j.engstruct.2014.02.019.

    Article  MathSciNet  Google Scholar 

  • Nhat-Duc, H., Nguyen, Q.-L., and Tran, V.-D. (2018). “Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network.” Automation in Construction, Elsevier, Vol. 94, No. 1, pp. 203–213, DOI: https://doi.org/10.1016/j.autcon.2018.07.008.

    Article  Google Scholar 

  • Nishikawa, T., Yoshida, J., and Sugiyama, T. (2012). “Concrete crack detection by multiple sequential image filtering.” Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 27, No. 1, pp. 29–47, DOI: https://doi.org/10.1111/j.1467-8667.2011.00716.x.

    Article  Google Scholar 

  • Pathirage, C. S. N., Li, J., Li, L., Hao, H., Liu, W., and Ni, P. (2018). “Structural damage identification based on autoencoder neural networks and deep learning.” Engineering Structures, Elsevier, Vol. 172, No. 1, pp. 13–28, DOI: https://doi.org/10.1016/j.engstruct.2018.05.109.

    Article  Google Scholar 

  • Phung, M. D., Quach, C. H., Dinh, T. H., and Ha, Q. (2017). “Enhanced discrete particle swarm optimization path planning for uav vision-based surface inspection.” Automation in Construction, Elsevier, Vol. 81, No. 1, pp. 25–33, DOI: https://doi.org/10.1016/j.autcon.2017.04.013.

    Article  Google Scholar 

  • Prasanna, P., Dana, K. J., Gucunski, N., Basily, B. B., La, H. M., Lim, R. S., and Parvardeh, H. (2016). “Automated crack detection on concrete bridges.” IEEE Transactions on Automation Science and Engineering, IEEE, Vol. 13, No. 2, pp. 591–599, DOI: https://doi.org/10.1109/tase.2014.2354314.

    Article  Google Scholar 

  • Shi, Y., Cui, L., Qi, Z., Meng, F., and Chen, Z. (2016). “Automatic road crack detection using random structured forests.” IEEE Transactions on Intelligent Transportation Systems, IEEE, Vol. 17, No. 12, pp. 3434–3445, DOI: https://doi.org/10.1109/tits.2016.2552248.

    Article  Google Scholar 

  • Simonyan, K. and Zisserman, A. (2014). “Very deep convolutional networks for large-scale image recognition.” arXiv:1409.1556v6.

  • Singhal, T., Kim, E., Kim, T. Y., and Yang, J. (2017). “Weak bond detection in composites using highly nonlinear solitary waves.” Smart Materials and Structures, IOP, Vol. 26, No. 5, pp. 055011, DOI: https://doi.org/10.1088/1361-665X/aa6823.

    Article  Google Scholar 

  • Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., and Rabinovich, A. (2015) “Going deeper with convolutions.” Proc of the IEEE Conference on Computer Vision and Pattern Recognition., CVPR, Boston, pp. 1–9, DOI: https://doi.org/10.1109/cvpr.2015.7298594.

    Google Scholar 

  • Wang, L. and Zhang, Z. (2017). “Automatic detection of wind turbine blade surface cracks based on uav-taken images.” IEEE Transactions on Industrial Electronics, IEEE, Vol. 64, No. 9, pp. 7293–7303, DOI: https://doi.org/10.1109/TIE.2017.2682037.

    Article  Google Scholar 

  • Xue, Y. and Li, Y. (2018). “A fast detection method via region-based fully convolutional neural networks for shield tunnel lining defects.” Computer-Aided Civil and Infrastructure Engineering, Wiley, Vol. 33, No. 8, pp. 638–654, DOI: https://doi.org/10.1111/mice.12367.

    Article  Google Scholar 

  • Zhang, K., Cheng, H. D., and Zhang, B. (2018). “Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning.” Journal of Computing in Civil Engineering, ASCE, Vol. 32, No. 2, pp. 04018001, DOI: https://doi.org/10.1061/(ASCE)CP.1943-5487.0000736.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by the Sichuan Energy Internet Research Center of Tsinghua University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuncheng Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Zhang, H., Wang, S. et al. Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning. KSCE J Civ Eng 23, 4493–4502 (2019). https://doi.org/10.1007/s12205-019-0437-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-019-0437-z

Keywords

Navigation