Skip to main content
Log in

Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

We studied the effects of increasing pressure and adding carbon dioxide, hydrogen and nitrogen to Methane-air mixture on premixed laminar burning velocity and NO formation in experimentally and numerically methods. Equivalence ratio was considered within 0.7 to 1.3 for initial pressure between 0.1 to 0.5 MPa and initial temperature was separately considered 298 K. Mole fractions of carbon dioxide, hydrogen and nitrogen were regarded in mixture from 0 to 0.2. Heat flux method was used for measurement of burning velocities of Methane-air mixtures diluted with CO2 and N2. Experimental results were compared to the calculations using a detailed chemical kinetic scheme (GRI-MECH 3.0). The results in atmosphere pressure for Methane-air mixture were calculated and compared with the results of literature. Results were in good agreement with published data in the literature. Then, by adding carbon dioxide and nitrogen to Methaneair mixture, we witnessed that laminar burning velocity was decreased, whereas by increasing hydrogen, the laminar burning velocity was increased. Finally, the results showed that by increasing the pressure, the premixed laminar burning velocity decreased for all mixtures, and NO formation indicates considerable increase, whereas the laminar flame thickness decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Riccius, R. Smith, F. Guthe and P. Flohr, The GT24/26 combustion technology and high hydrocarbon fuels, Proc. of ASME Turbo Expo Power for Land, Sea and Air, Reno 2005.

    Google Scholar 

  2. G. Iskender and E. Lebas, Alternative fuels for industrial gas turbines, Applied Thermal Engineering, 24(11–12) (2004) 1655–1663.

    Google Scholar 

  3. X. Zhang, B. W. Wang, Y. W. Liu and G. H. Xu, Conversion of methane by steam reforming using dielectric-barrier discharge, Chinese Journal of Chemical Engineering, 17(4) (2009) 625–629.

    Article  Google Scholar 

  4. C. Shanshan, J. Yong, Q. Rong and A. Jiangtao, Numerical study on laminar burning velocity and flame stability of premixed Methane/Ethylene/Air flames, Chinese Journal of Chemical Engineering, 20(2) (2012) 914–922.

    Google Scholar 

  5. A. Bilgin, Geometric features of the flame propagation process for an SI engine having dual ignition system, International Journal of Energy Research, 26(11) (2002) 987–1000.

    Article  Google Scholar 

  6. E. Hu, X. Jiang, Z. Huang and N. Iida, Numerical study on the effects of diluents on the laminar burning velocity of Methane-Air mixtures, Energy and Fuels, 26(7) (2012) 4242–4252.

    Article  Google Scholar 

  7. A. Clarke, R. Stone and P. Beckwith, Measuring the laminar burning velocity of methane/diluent/air mixtures within a constant-volume combustion bomb in a micro-gravity environment, Journal of Energy Institute, 68(476) (1995) 130–136.

    Google Scholar 

  8. A. Van Maaren, D. S. Thung and L. P. H. De Goey, Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures, Combustion Science and Technology, 96(4) (1994) 327–344.

    Article  Google Scholar 

  9. E. J. Hu, Z. H. Huang, B. Liu, J. J. Zheng and X. L. Gu, Experimental study on combustion characteristics of a spark-ignition engine fueled with natural gas-hydrogen blends combining with EGR, International Journal of Hydrogen Energy, 34(2) (2009) 1035–1044.

    Article  Google Scholar 

  10. R. T. E. Hermanns, J. A. Kortendijk, R. J. M. Bastiaans and L. P. H. De Goey, Laminar burning velocities of methane-hydrogen-air mixtures, Third European Conference on Small Burner Technology and Heating Equipment (2003) 240–247.

    Google Scholar 

  11. R. T. E. Hermanns, Laminar burning velocities of methane-hydrogen-air mixtures, PhD Thesis, Eindhoven University of Technology (2007).

    Google Scholar 

  12. G. Yu, C. K. Law and C. K. Wu, Laminar flame speeds of hydrocarbon air mixtures with hydrogen addition, Combustion and Flame, 63(3) (1986) 339–347.

    Article  Google Scholar 

  13. K. J. Bosschaart and L. P. H. de Goey, Detailed analysis of the heat flux method for measuring burning velocities, Combustion and Flame, 132(1–2) (2003) 170–180.

    Article  Google Scholar 

  14. A. Van Maaren, D. S. Thung and L. P. H. de Goey, Measurement of flame temperature and adiabatic burning velocity of methane/air mixtures, Combustion Science and Technology, 96 (1994) 327–344.

    Article  Google Scholar 

  15. I. V. Dyakov, A. A. Konnov, J. Ruyck, K. J. Bosschaart, E. C. M. Brock and L. P. H. de Goey, Measurement of adiabatic burning velocity in methane-oxygen-nitrogen mixtures, Combustion Science and Technology, 172(1) (2001) 81–96.

    Article  Google Scholar 

  16. K. J. Bosschaart and L. P. H. de Goey, The laminar burning velocity of mixtures of hydrocarbon and air as measured with the heat-flux method, Combustion and Flame, 136(3) (2004) 261–269.

    Article  Google Scholar 

  17. A. A. Konnov, R. J. Meuwissen and L. P. H. de Goey, The temperature dependence of the laminar burning velocity of ethanol flames, Proc. of the Combustion Institute, 33(1) (2011) 1011–1019.

    Article  Google Scholar 

  18. L. P. H. de Goey, L. M. T. Somers, W. M. L. Bosch and R. M. M. Mallens, Modeling of small scale structure of flat burner-stabilized flames, Combustion Science and Technology, 104 (1995) 387–400.

    Article  Google Scholar 

  19. R. J. Kee, J. F. Grcar, M. D. Smooke and J. A. Miller, PREMIX: a FORTRAN program for modeling steady laminar one-dimensional premixed flames, Sandia National Laboratory, SAND Report (1985) 85–8240.

    Google Scholar 

  20. R. J. Kee, F. M. Rupley and J. A. Miller, CHEMKIN-II: a FORTRAN chemical kinetics package for the analysis of gas-phase chemical kinetics, Technical Report SAND, Sandia National Laboratories (1989) 89–8009.

    Google Scholar 

  21. M. Frenklach, T. Bowman, G. Smith and B. Gardiner, Available from: 〈http://www.me.berkeley.edu/gri_mech/〉.

  22. F. N. Egolfopoulos, P. Cho and C. K. Law, Laminar flame speeds of methane/air mixtures under reduced and elevated pressures, Combustion and Flame, 76(3–4) (1989) 375–391.

    Article  Google Scholar 

  23. C. Uykur, P. F. Henshaw, D. S. K. Ting and R. M. Barron, Effects of addition of electrolysis product on methane/air premixed laminar combustion, International Journal of Hydrogen Energy, 26(3) (2001) 265–273.

    Article  Google Scholar 

  24. C. M. Vagelopoulos and F. N. Egolfopoulos, Direct experimental determination of laminar flame speeds, Symposium (International) on Combustion, 27(1) (1998) 513–519.

    Article  Google Scholar 

  25. X. J. Gua, M. Z. Haqa, M. Lawesa and R. Woolleya, Laminar burning velocity and Markstein lengths of methane-air mixtures, Combustion and Flame, 121(1–2) (2000) 41–58.

    Article  Google Scholar 

  26. F. Halter, T. Tahtouh and C. M. Rousselle, Nonlinear effects of stretch on the flame front propagation, Combustion and Flame, 157(10) (2010) 1825–1832.

    Article  Google Scholar 

  27. O. Park, P. S. Veloo, N. Liu and F. N. Egolfopoulos, Combustion characteristics of alternative gaseous fuels, Proceedings of the Combustion Institute, 33(1) (2011) 887–894.

    Article  Google Scholar 

  28. V. R. Kishore, N. Duhan, M. R. Ravi and A. Ray, Measurement of adiabatic burning velocity in natural gas-like mixtures, Experimental Thermal and Fluid Science, 33(1) (2008) 10–16.

    Article  Google Scholar 

  29. F. Halter, C. Chauveau, N. D. Chaumeix and I. Gokalp, Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixture, Proceedings of the Combustion Institute, 30(1) (2005) 201–208.

    Article  Google Scholar 

  30. H. Erjiang, Z. Huang, J. Zheng, Q. Li and J. He, Numerical study on laminar burning velocity and NO formation of premixed methane-hydrogen-air flames, International Journal of Hydrogen Energy, 34(15) (2009) 6545–6557.

    Article  Google Scholar 

  31. S. Lee, H. Lee, Y. Park and Y. Cho, Combustion and emission characteristics of HCNG in a constant volume chamber, Journal of Mechanical Science and Technology, 25(2) (2011) 489–494.

    Article  Google Scholar 

  32. M. Metghalchi and J. C. Keck, Laminar burning velocity of propane /air mixtures at high temperature and pressure, Combustion and Flame, 38 (1980) 143–154.

    Article  Google Scholar 

  33. J. H. Wang, Z. H. Huang, Y. Fang, B. Liu, K. Zeng, H. Y. Miao and D. Jiang, Combustion behaviors of a direct injection engine operating on various fractions of natural gas-hydrogen blends, International Journal of Hydrogen Energy, 32(15) (2007) 3555–3564.

    Article  Google Scholar 

  34. H. S. Guo, G. J. Smallwood, F. S. Liu, Y. G. Ju and O. L. Gulder, The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/air premixed flames, Proc. of the Combustion Institute, 30 (2005) 303–311.

    Article  Google Scholar 

  35. K. Chun, H. Chung, S. Chung, J. Choi, A numerical study on extinction and NOx formation in nonpremixed flames with syngas fuel, Journal of Mechanical Science and Technology, 25(11) (2011) 2943–2949.

    Article  Google Scholar 

  36. J. Y. Ren, W. Qin, F. N. Egolfopoulos and T. T. Tsotsis, Strain-rate effects on hydrogen-enhanced lean premixed combustion, Combustion and Flame, 124 (2001) 717–720.

    Article  Google Scholar 

  37. J. Warnatz, U. Maas and R. W. Dibble, Combustion: physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 2nd ed. Berlin, Springer-Verlag (1998).

    Google Scholar 

  38. S. M. Correa, A review of NOx formation under gas-turbine combustion conditions, Combustion Science and Technology, 87 (1993) 329–362.

    Article  Google Scholar 

  39. P. V. Heberling, “Prompt no” measurements at high pressures, Symposium (International) on Combustion, 16(1) (1977) 159–168.

    Article  Google Scholar 

  40. M. S. Klassen, D. D. Thomsen, J. R. Reisel and N. M. Laurendeau, Laser-induced fluorescence measurements of nitric oxide formation in high-pressure premixed methane flames, Combustion Science and Technology, 111(1) (1995) 229–247.

    Article  Google Scholar 

  41. V. M. V. Essen, A. V. Sepman, A. V. Mokhov and H. B. Levinsky, Pressure dependence of NO formation in laminar fuel-rich premixed CH4/air flames, Combustion and Flame, 153(3) (2008) 434–441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Zahedi.

Additional information

Recommended by Editor Oh Chae Kwon

Peyman Zahedi received his M.Sc. in Mechanical Engineering in 2013 from Azad university of Mashhad in Iran. His research interests include combustion, multiphase flows, computational fluid dynamics and flow control.

Kianoosh Yousefi received his B.Sc. and M.Sc. in Mechanical Engineering from Azad university of Mashhad in 2009 and 2013, respectively. His research interests are in the area of aerodynamics, flow control, fluid mechanics, turbulent flows and combustion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zahedi, P., Yousefi, K. Effects of pressure and carbon dioxide, hydrogen and nitrogen concentration on laminar burning velocities and NO formation of methane-air mixtures. J Mech Sci Technol 28, 377–386 (2014). https://doi.org/10.1007/s12206-013-0970-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-013-0970-5

Keywords

Navigation