Skip to main content
Log in

Bird strike analysis on a typical helicopter windshield with different lay-ups

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

In the current paper, bird strike to a typical helicopter windshield is investigated using smoothed particles hydrodynamic (SPH) finite element method. Five types of lay-ups in a windshield (single layer stretch acrylic, single layer glass, two-wall cast acrylic, acrylic with Polyvinyl butyral (PVB) interlayer and glass with PVB interlayer) is considered and in each case the thickness which prevents the bird from perforating the windshield is calculated. Since helicopters can have lateral movement in addition to their longitudinal movement, the effect of incident angle on the integrity of windshield is also investigated. Simulations showed that among the five cases presented, glass with PVB interlayer can be the best choice for being used in windshield against bird strike. Another conclusion is that for the same initial velocity, the angled impact can cause more damage in the windshield than the direct impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. http://wildlife.pr.erau.edu/database.

  2. E. C. Cleary, R. A. Dolbeer and S. E. Wright, Wildlife strikes to civil aircraft in the United States, 1990–2005, U.S. Department of Transportation, Federal Aviation Administration, Office of Airport Safety and Standards, Serial Report No. 12, Washington, DC., USA (2006).

    Google Scholar 

  3. http://www.tc.gc.ca/eng/civilaviation/publications/tp13549-plates-409.htm .

  4. J. S. Wilbeck, Impact behavior of low strength projectiles, Report No. AFML-TR-77-34, Air Force Materials Lab., Air Force Wright Aeronautical Lab’s, Wright-Patterson Air Force base, OH (1977).

    Google Scholar 

  5. E. Niering, Simulation of bird strikes on turbine engines, Turbinen-UnionMunich, Germany (1988).

    Google Scholar 

  6. J. Donea, A. Huerta, J. Ponthot and A. RodrÍguez-Ferran, Arbitrary Lagrangian-Eulerian methods, Encyclopedia of Computational Mechanics, 1(14) (2004).

    Google Scholar 

  7. F. Stoll and R. A. Brockman, Finite element simulation of high speed soft-body impacts, In: Proceedings of the 1997 38th AIAA/ASME/ASCE/AHS/ASC structure, structural dynamics, and materials conference, Part 1 (of 4), Kissimmee, FL, USA (1997) 334–44.

    Google Scholar 

  8. T. J. Moffat and W. L. Cleghorn, Prediction of bird impact pressures and damage using MSC/DYTRAN, Proceedings of ASME TURBOEXPO, Louisiana (2001).

    Google Scholar 

  9. J. P. Barber, H. R. Taylor and J. S. Wilbeck, Characterization of bird impacts on a rigid plate: Part 1, Technical report AFFDL-TR-75-5 (1975).

    Google Scholar 

  10. J. Frischbier and A. Kraus, Multiple stage turbofan bird ingestion analysis with ALE and SPH methods, In: 17th International symposium on air breathing engines, Munich, Germany (2005).

    Google Scholar 

  11. Y. Pei, B. Song and Q. Han, FEM analysis and simulation of bird striking aircraft structure. In: Progress on safety science and technology, Proceedings of the Asia Pacific symposium on safety, Shaoxing, China (2005) 379–84.

    Google Scholar 

  12. A. G. Hanssen, Y. Girard, L. Olovsson, T. Berstad and M. Langseth, A numerical model for bird strike of aluminium foam-based sandwich panels, Int. J. Impact Eng., 32(7) (2006) 1127–44.

    Article  Google Scholar 

  13. J. M. Guimard and S. Heimbs, Towards the industrial assessment of bird strike simulations on composite laminate structures, In: Composites 2011, 3 rd ECCOMAS thematic conference on the mechanical response of composites, Hanover, Germany (2011).

    Google Scholar 

  14. R. Hedayati and S. Ziaei-Rad, Foam-core effect on the integrity of tailplane leading edge during bird-strike event, Journal of Aircraft, 48(6) (2011) 2080–2089.

    Article  Google Scholar 

  15. C. H. Tho and M. R. Smith, Accurate bird strike simulation methodology for BA609 tiltrotor, In: American helicopter society 64th annual forum, Montreal, Canada (2008).

    Google Scholar 

  16. S. Heimbs, Computational methods for bird strike simulations: A review, Computers & Structures, 89 (2011) 2093–2112.

    Article  Google Scholar 

  17. M. A. Lavoie, Validation of available approaches for numerical bird strike modeling tools, International Review of Mechanical Engineering, 1(4) (2007) 380–389.

    Google Scholar 

  18. M. A. Lavoie, A. Gakwaya, M. NejadEnsan, D. G. Zimcik, and D. Nandlall, Bird’s substitute tests results and evaluation of available numerical methods, International Journal of Impact Engineering, 36 (2009) 1276–87.

    Article  Google Scholar 

  19. Y. N. Shmotin, P. V. Chupin, D. V. Gabov, A. A. Ryabov, V. I. Romanov and S. S. Kukanov, Bird strike analysis of aircraft engine fan, In: 7th European LS-DYNA users conference, Salzburg, Austria (2009).

    Google Scholar 

  20. M. Anghileri, L. M. L. Castelletti, F. Invernizzi and M. Mascheroni, Birdstrike onto the composite intake of a turbofan engine, In: 5th European LS-DYNA users conference, Birmingham, UK (2005).

  21. H. Salehi, S. Ziaei-Rad and M. A. Vaziri-Zanjani, Bird impact effects on different types of aircraft bubble windows using numerical and experimental methods, Int. J. Crashworthiness, 15(1) (2010) 93–106.

    Article  Google Scholar 

  22. C. Rössler, Numerische simulation des vogelschlagimpakts auf ein CFKF lügelvorderkanten Konzeptmit Hilfe der finite-elemente-methode, Diploma thesis, Technische Universität München (2004).

    Google Scholar 

  23. S. Georgiadis, A. J. Gunnion, R. S. Thomson and B. K. Cartwright, Bird-strike simulation for certification of the Boeing 787 composite moveable trailing edge, Compos Struct, 86(1–3) (2008) 258–68.

    Article  Google Scholar 

  24. B. Lagrand, A. S. Bayard, Y. Chauveau and E. Deletombe, Assessment of multi-physics FE methods for bird strike modeling — Application to a metallic riveted airframe, International Journal of Crashworthiness, 7(4) (2002) 415–428.

    Google Scholar 

  25. A. Airoldi and B. Cacchione, Modeling of impact forces and pressures in Lagrangian bird strike analyses, International Journal of Impact Engineering, 32 (2006) 1651–1677.

    Article  Google Scholar 

  26. M. Guida, A. Grimaldi, F. Marulo and A. Sollo, FE study-of wind shield subjected to high speed bird impact, Proceeding of 26th International Congress of the Aeronautical Sciences, (2008).

    Google Scholar 

  27. A. Grimaldi, A. Sollo, M. Guida and F. Marulo, Parametric study of a SPH high velocity impact analysis: A birdstrike windshield application, Composite Structures, 96 (2013) 616–630.

    Article  Google Scholar 

  28. F. S. Wang, Z. F. Yue, Numerical simulation of damage and failure in aircraft windshield structureagainst bird strike, Materials and Design, 31(2) (2010) 687–95.

    Article  Google Scholar 

  29. A. Grimaldi, SPH high velocity impact analysis — A birdstrike windshield application, Doctoral Thesis, Department of Aerospace Engineering, University of Naples Federico II (2011).

    Google Scholar 

  30. LS-DYNA 971 keyword user’s manual, Livermore Software Technology Corporation (2006).

  31. J. Buchar, S. Rolc, J. Voldrich, M. Lazar and M. Starek, The development of the glass laminates resistant to the small arms fire, 19th International Symposium of Ballistics, Interlaken, Switzerland (2001) 7–11.

    Google Scholar 

  32. K. R. Ramakrishnan, Low velocity impact behaviour of unreinforced bi-layer plastic laminates, MSc Thesis, University of New South Wales, Australian Defence Force Academy.

  33. M. Chizari, L. M. Barrett and S. T. S. Al-Hassani, An explicit numerical modeling of the water jet tube forming, Comput. Mater. Sci., 45 (2009) 378–384.

    Article  Google Scholar 

  34. S. A. Meguid, R. H. Mao and N. Y. Ng, FE analysis of geometry effects of an artificial bird striking an aero engine fan blade, International Journal of Impact Engineering, 35 (2007) 487–498.

    Article  Google Scholar 

  35. R. A. Brockman and T. W. Held, Explicit finite element method for transparency impact analysis, University of Dayton Research Institute, Technical report WL-TR-91-3006, Dayton, OH (1991).

    Google Scholar 

  36. R. Hedayati and S. Ziaei-Rad, Effect of bird geometry and orientation on bird-target impact analysis using SPH method, International Journal of Crashworthiness, 17(4) (2012) 445–459.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Hedayati.

Additional information

Recommended by Associate Editor Kyeongsik Woo

Reza Hedayati completed his Ph.D. at Amirkabir University of Technology and his undergraduate studies at Isfahan University of Technology. His research interests lie in the area of Impact engineering, Composite structures, Multiscale Finite Element modeling, and Experimental Mechanics. In recent years, he has focused on better techniques for modeling and analyzing bird impact on different components of aircraft such as tailplane, windshield, and fuselage.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedayati, R., Ziaei-Rad, S., Eyvazian, A. et al. Bird strike analysis on a typical helicopter windshield with different lay-ups. J Mech Sci Technol 28, 1381–1392 (2014). https://doi.org/10.1007/s12206-014-0125-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-014-0125-3

Keywords

Navigation