Skip to main content
Log in

Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The strong swirling flow at the exit of the runner of a Francis turbine at part load causes flow instabilities and cavitation surges in the draft tube, deteriorating the performance of the hydraulic power system. The unsteady cavitating turbulent flow in the draft tube is simplified and modeled by a diffuser with swirling flow using the Scale-adaptive simulation method. Unsteady characteristics of the vortex rope structure and the underlying mechanisms for the interactions between the cavitation and the vortices are both revealed. The generation and evolution of the vortex rope structures are demonstrated with the help of the iso-surfaces of the vapor volume fraction and the Qcriterion. Analysis based on the vorticity transport equation suggests that the vortex dilatation term is much larger along the cavity interface in the diffuser inlet and modifies the vorticity field in regions with high density and pressure gradients. The present work is validated by comparing two types of cavitation surges observed experimentally in the literature with further interpretations based on simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Nishi and S. H. Liu, An outlook on the draft-tube-surge study, International Journal of Fluid Machinery and Systems, 6 (1) (2013) 33–48.

    Article  Google Scholar 

  2. Y. L. Wu, J. T. Liu, Y. K. Sun, S. H. Liu and Z. G. Zuo, Numerical analysis of flow in a Francis turbine on an equal critical cavitation coefficient line, Journal of Mechanical Science and Technology, 27 (6) (2013) 1635–1641.

    Article  Google Scholar 

  3. R. F. Susan-Resiga, S. Muntean, F. Avellan and I. Anton, Mathematical modelling of swirling flow in hydraulic turbines for the full operating range, Appl. Math. Model, 35 (10) (2011) 4759–4773.

    Article  Google Scholar 

  4. Z. D. Qian, J. D. Yang and W. X. Huai, Numerical simulation and analysis of pressure pulsation in francis hydraulic turbine with air admission, J. Hydrodyn, 19 (4) (2007) 467–472.

    Article  Google Scholar 

  5. R. Susan-Resiga, T. Vu, S. Muntean, G. D. Ciocan and B. Nennemann, Jet control of the draft tube vortex rope in francis turbines at partial discharge, Proceedings of 23rd IAHR Symposium on Hydraulic Machinery and Systems, Yokohama, Japan (2006).

    Google Scholar 

  6. R. K. Zhang, F. Mao, J. Z. Wu, S. Y. Chen, Y. L. Wu and S. H. Liu, Characteristics and control of the draft-tube flow in part-load francis turbine, J. Fluids Eng., 131 (2) (2009) 021101.

    Article  Google Scholar 

  7. R. Susan-Resiga, G. D. Ciocan, I. Anton and F. Avellan, Analysis of the swirling flow downstream a francis turbine runner, J. Fluids Eng., 128 (1) (2006) 177–189.

    Article  Google Scholar 

  8. Z. D. Qian, W. Li, W. X. Huai and Y. L. Wu, The effect of runner cone design on pressure oscillation characteristics in a francis hydraulic turbine, Proceedings of the Institution of Mechanical Engineers Part a-Journal of Power and Energy, 226 (A1) (2012) 137–150.

    Article  Google Scholar 

  9. M. S. Iliescu, G. D. Ciocan and F. Avellan, Analysis of the cavitating draft tube vortex in a francis turbine using particle image velocimetry measurements in two-phase flow, J. Fluids Eng., 130 (2) (2008) 021105.

    Article  Google Scholar 

  10. Y. Tsujimoto, K. Kamijo and Y. Yoshida, A theoreticalanalysis of rotating cavitation in inducers, J. Fluids Eng., 115 (1) (1993) 135–141.

    Article  Google Scholar 

  11. Y. Tsujimoto, K. Kamijo and C. E. Brennen, Unified treatment of flow instabilities of turbomachines, J. Propul Power, 17 (3) (2001) 636–643.

    Article  Google Scholar 

  12. Y. Iga, K. Hashizume and Y. Yoshida, Numerical analysis of three types of cavitation surge in cascade, J. Fluids Eng., 133 (7) (2011) 071102.

    Article  Google Scholar 

  13. E. Roohi, A. P. Zahiri and M. Passandideh-Fard, Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model, Appl. Math. Model, 37 (2013) 6469–6488.

    Article  MathSciNet  Google Scholar 

  14. X. X. Peng et al., Combined experimental observation and numerical simulation of the cloud cavitation with U-type flow structures on hydrofoils, Int. J. Multiphase Flow, 79 (2016) 10–22.

    Article  MathSciNet  Google Scholar 

  15. B. Ji, X. W. Luo, R. E. A. Arndt and Y. L. Wu, Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation-vortex interaction, Ocean Eng., 87 (2014) 64–77.

    Article  Google Scholar 

  16. G. H. Chen, G. Y. Wang, B. Huang, C. L. Hu and T. T. Liu, Numerical study on the influence of interphase interaction in sheet/cloud cavitating flows around a 2D hydrofoil, Journal of Mechanical Science and Technology, 29 (3) (2015) 1075–1083.

    Article  Google Scholar 

  17. S. Park and S. H. Rhee, Comparative study of incompressible and isothermal compressible flow solvers for cavitating flow dynamics, Journal of Mechanical Science and Technology, 29 (8) (2015) 3287–3296.

    Article  Google Scholar 

  18. J. T. Liu, S. H. Liu, Y. L. Wu, L. Jiao, L. Q. Wang and Y. K. Sun, Numerical investigation of the hump characteristic of a pump-turbine based on an improved cavitation model, Comput. Fluids, 68 (2012) 105–111.

    Article  Google Scholar 

  19. H. L. Liu, Y. Wang, D. X. Liu, S. Q. Yuan and J. Wang, Assessment of a turbulence model for numerical predictions of sheet-cavitating flows in centrifugal pumps, Journal of Mechanical Science and Technology, 27 (9) (2013) 2743–2750.

    Article  Google Scholar 

  20. X. M. Guo, L. H. Zhu, Z. C. Zhu, B. L. Cui and Y. Li, Numerical and experimental investigations on the cavitation characteristics of a high-speed centrifugal pump with a splitter-blade inducer, Journal of Mechanical Science and Technology, 29 (1) (2015) 259–267.

    Article  Google Scholar 

  21. Z. F. Zhu, Numerical study on characteristic correlation between cavitating flow and skew of ship propellers, Ocean Eng., 99 (2015) 63–71.

    Article  Google Scholar 

  22. M. Morgut and E. Nobile, Numerical predictions of cavitating flow around model scale propellers by CFD and advanced model calibration, International Journal of Rotating Machinery, 2012 (2012) 618180.

    Article  Google Scholar 

  23. B. Ji, X. W. Luo, X. X. Peng and Y. L. Wu, Threedimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil, J. Hydrodyn, 25 (4) (2013) 510–519.

    Article  Google Scholar 

  24. X. X. Yu, C. G. Huang, T. Z. Du, L. J. Liao, X. C. Wu, Z. Zheng and Y. W. Wang, Study of characteristics of cloud cavity around axisymmetric projectile by large eddy simulation, J. Fluids Eng., 136 (5) (2014) 051303.

    Article  Google Scholar 

  25. B. Huang, Y. Zhao and G. Y. Wang, Large eddy simulation of turbulent vortex-cavitation interactions in transient sheet/cloud cavitating flows, Comput. Fluids, 92 (2014) 113–124.

    Article  Google Scholar 

  26. B. Ji, X. W. Luo, R. E. A. Arndt, X. X. Peng and Y. L. Wu, Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil, Int. J. Multiphase Flow, 68 (2015) 121–134.

    Article  MathSciNet  Google Scholar 

  27. T. R. Chen, B. Huang, G. Y. Wang and K. Wang, Effects of fluid thermophysical properties on cavitating flows, Journal of Mechanical Science and Technology, 29 (10) (2015) 4239–4246.

    Article  Google Scholar 

  28. F. R. Menter and Y. Egorov, The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 1: Theory and model description, Flow Turbul. Combust, 85 (1) (2010) 113–138.

    Article  MATH  Google Scholar 

  29. Y. Egorov, F. R. Menter, R. Lechner and D. Cokljat, The scale-adaptive simulation method for unsteady turbulent flow predictions. Part 2: Application to complex flows, Flow Turbul Combust, 85 (1) (2010) 139–165.

    Article  MATH  Google Scholar 

  30. J. Decaix and E. Goncalves, Time-dependent simulation of cavitating flow with k-l turbulence models, Int. J. Numer. Methods Fluids, 68 (8) (2012) 1053–1072.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Decaix and E. Goncalvès, Investigation of threedimensional effects on a cavitating Venturi flow, Int. J. Heat Fluid Fl, 44 (2013) 576–595.

    Article  Google Scholar 

  32. P. J. Zwart, A. G. Gerber and T. Belamri, A two-phase flow model for predicting cavitation dynamics, Proceedings of International Conference on Multiphase Flow, Yokohama, Japan (2004).

    Google Scholar 

  33. C. K. Chen, Investigation of full load draft tube surge in hydraulic power generating systerm, Ph.D. Thesis, Osaka University, Osaka, Japan (2010).

    Google Scholar 

  34. C. K. Chen, C. Nicolet, K. Yonezawa, M. Farhat, F. Avellan, K. Miyagawa and Y. Tsujimoto, Experimental study and numerical simulation of cavity oscillation in a diffuser with swirling flow, International Journal of Fluid Machinery and Systems, 3 (1) (2010) 80–90.

    Article  Google Scholar 

  35. A. Kubota, H. Kato, H. Yamaguchi and M. Maeda, Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique, J. Fluids Eng., 111 (2) (1989) 204–210.

    Article  Google Scholar 

  36. Y. N. Zhang et al., A review of rotating stall in reversible pump turbine, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, In press (Accepted).

  37. Y. Zhang et al., A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow, Renewable and Sustainable Energy Reviews, 56 (2016) 303–318.

    Article  Google Scholar 

  38. A. M. Zhang P. Cui, J. Cui and Q. X. Wang, Experimental study on bubble dynamics subject to buoyancy, J. Fluid Mech., 776 (2015) 137–160.

    Article  Google Scholar 

  39. J. C. R. Hunt, A. A. Wray and P. Moin, Eddies, streams, and convergence zones in turbulent flows, Proceedings of the 1988 Summer Program In its Studying Turbulence Using Numerical Simulation Databases, 2 (SEE N89-24538 18-34), Center for Turbulence Research (1988).

    Google Scholar 

  40. M. Nishi, K. Yoshida, M. Yano, D. Nakashima, T. Tsukamoto and S. H. Liu, The effect of exit boundary conditions on the swirling flow in a conical diffuser, Proceedings of 23rd IAHR Symposium on Hydraulic Machinery and Systems,Yokohama, Japan (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Ji.

Additional information

Recommended by Associate Editor Shin Hyung Rhee

Bin Ji obtained his Ph.D. from the Department of Thermal Engineering, Tsinghua University, China, in 2011. Then, he served as a Post-doc at State Key Laboratory of Hydroscience and Engineering, Tsinghua University, China from 2011 to 2015. He is currently an associate professor in Wuhan University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, B., Wang, J., Luo, X. et al. Numerical simulation of cavitation surge and vortical flows in a diffuser with swirling flow. J Mech Sci Technol 30, 2507–2514 (2016). https://doi.org/10.1007/s12206-016-0511-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-016-0511-0

Keywords

Navigation