Skip to main content
Log in

Optimization of process parameters to enhance formability of AA 5182 alloy in deep drawing of square cups by hydroforming

  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

The formability of 1 mm thick AA5182 aluminum alloy sheets in deep drawing of square cups by hydroforming was studied. The influence of process parameters (peak pressure, pressure path, and blank holding force) on formability was investigated through numerical simulations and validated with experimental work. The experiments were designed using the Taguchi method. The minimum thickness in the formed cups (at the bottom corners) and the minimum corner radius that can be achieved were considered as the criteria for evaluation of formability. The peak pressure was the most important process parameter affecting thinning and the minimum corner radius that can be achieved. The variation of the pressure path had the least effect on formability. Regression models were developed for prediction of minimum thickness in the cup and the corner radius as a function of peak pressure and blank holding force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. H. Lang, Z. R. Wang, D. C. Kang, S. J. Yuan, S. H. Zhang, J. Danckert and K. B. Nielsen, Hydroforming high lights: sheet hydroforming and tube hydroforming, J. Mater. Process. Tech., 151 (2004) 165–177.

    Article  Google Scholar 

  2. S. K. Singh and D. R. Kumar, Effect of process parameters on product surface finish and thickness variation in hydro-mechanical deep drawing, J. Mater. Process. Tech., 204 (2008) 169–178.

    Article  Google Scholar 

  3. M. Geiger, M. Merklein and M. Cojutti, Hydroforming of inhomogeneous sheet pairs with counter pressure, Prod. Eng. Res. Dev., 3 (2009) 17–22.

    Article  Google Scholar 

  4. P. Hein and F. Vollertsen, Hydroforming of sheet metal pairs, J. Mater. Process. Tech., 87 (1999) 154–164.

    Article  Google Scholar 

  5. K. Matthias, C. Manfred, T. A. Erman, R. Robert, S. Kerstin and T. Michael, Development of ultra high performance concrete dies for sheet metal hydroforming, Prod. Eng. Res. Dev., 2 (2008) 201–208.

    Article  Google Scholar 

  6. S. Novotny and P. Hein, Hydroforming of sheet metal pairs from aluminum alloys, J. Mater. Process. Tech., 115 (2001) 65–69.

    Article  Google Scholar 

  7. S. H. Zhang and J. Danckert, Development of hydromechanical deep drawing, J. Mater. Process. Tech., 83 (1998) 14–25.

    Article  Google Scholar 

  8. T. Nakagawa, K. Nakagawa and H. Amino, Various applications of hydraulic counter pressure deep drawing, J. Mater. Process. Tech., 71 (1997) 160–167.

    Article  Google Scholar 

  9. E. Onder and A. E. Tekkaya, Numerical simulation of various cross sectional workpieces sing conventional deep drawing and hydroforming technologies, Int. J. Mach. Tool. Manu., 48 (2008) 532–542.

    Article  Google Scholar 

  10. S. G. Desai and P. P. Date, On the quantification of strain distribution in drawn sheet metal products, J. Mater. Process. Tech., 177 (2006) 439–443.

    Article  Google Scholar 

  11. D. Y. Yang, J. B. Kim and D. W. Lee, Investigation into manufacturing of very long cups by hydromechanical deep drawing and ironing with controlled radial pressure, CIRP Annals, 44 (1995) 255–258.

    Article  Google Scholar 

  12. M. Sasawat and K. Muammer, Fabrication of microchannel arrays on thin metallic sheet using internal fluid pressure: Investigations on size effects and development of design guidelines, J. Power Sources, 175 (2008) 363–371.

    Article  Google Scholar 

  13. M. H. Hojjati, M. Zoorabadia and S. J. Hosseinipour, Optimization of superplastic hydroforming process of aluminium alloy 5083, J. Mater. Process. Tech., 205 (2008) 482–488.

    Article  Google Scholar 

  14. T. J. Kim, D. Y. Yang and S. S. Han, Numerical modeling of the multi-stage sheet pair hydro forming process, J. Mater. Process. Tech., 151 (2004) 48–53.

    Article  Google Scholar 

  15. H. Z. Shi, X. Z. Li, T. W. Zhong and X. Yi, Technology of sheet hydroforming with a movable female die, Int. J. Mach. Tool. Manuf., 43 (2003) 781–785.

    Article  Google Scholar 

  16. K. P. Rao and J. J. Wei, Performance of a new dry lubricant in the forming of aluminum alloy sheets, Wear, 249 (2001) 86–93.

    Article  Google Scholar 

  17. B. H. Lee, Y. T. Keum and R. H. Wagoner, Modeling of the friction caused by lubrication and surface roughness in sheet metal forming, J. Mater. Process. Tech., 130–131 (2002) 60–63.

    Article  Google Scholar 

  18. R. Shivpuri and W. Zhang, Robust design of spatially distributed friction for reduced wrinkling and thinning failure in sheet drawing, Mater. Design, 30 (2009) 2043–2055.

    Article  Google Scholar 

  19. B. J. Kim, K. H. Choi, K. S. Park, C. J. Van Tyne and Y. H. Moon, Effect of surface defects on hydroformability of aluminum alloys, Key Eng. Mat., 340–341 (2007) 587–592.

    Article  Google Scholar 

  20. B. S. Kang, B. M. Son and J. Kim, A comparative study of stamping and hydroforming processes for an automobile fuel tank using FEM, Int. J. Mach. Tool. Manu., 44 (2004) 87–94.

    Article  Google Scholar 

  21. Y. S. Shin, H. Y. Kim, B. H. Jeon and S. I. Oh, Prototype tryout and die design for automotive parts using welded blank hydroforming, J. Mater. Process. Tech., 130–131 (2002) 121–127.

    Article  Google Scholar 

  22. O. Kreis and P. Hein, Manufacturing system for the integrated hydroforming, trimming and welding of sheet metal pairs, J. Mater. Process. Tech., 115 (2001) 49–54.

    Article  Google Scholar 

  23. M. Geiger, M. Vahl, S. Novotny and S. Bobbert, Process strategies for sheet metal hydroforming of lightweight components, P. I. Mech. Eng., 215/B (2001) 967–976.

    Google Scholar 

  24. W. Liu, G. Liu, X. Cui, Y. Xu and S. Yuan, Formability influenced by process loading path of double sheet hydro-forming, T. NonFerr. Met. Soc., 21 (2011) 465–469.

    Article  Google Scholar 

  25. G. Peter and E. Metin, Process control at the sealing line during sheet metal hydroforming, Prod. Eng. Res. Dev., 2 (2008) 3–8.

    Article  Google Scholar 

  26. H. S. Halkaci, M. Turkoz and M. Dilmec, Enhancing form-ability in hydromechanical deep drawing process adding a shallow drawbead to the blank holder, J. Mater. Process. Tech., 214 (2014) 1638–1646.

    Article  Google Scholar 

  27. A. H. Elkholy and O. M. Al-Hawaj, Collapse pressure and strength analysis of hydroformed circular plates, Int. J. Adv. Manuf. Technol., 18 (2001) 79–88.

    Article  Google Scholar 

  28. M. A. Karkoub, Prediction of hydroforming characteristics using random neural networks, J. Intel. Manuf., 17 (2006) 321–330.

    Article  Google Scholar 

  29. A. Ahmad and R. E. Mohammad, Pressure estimation in the hydroforming process of sheet metal pairs with the method of upper bound analysis, J. Mater. Process. Tech., 209 (2009) 2270–2276.

    Article  Google Scholar 

  30. D. A. Oliveira, M. J. Worswick, M. Finn and D. Newman, Electromagnetic forming of aluminum alloy sheet: Free-form and cavity fill experiments and model, J. Mater. Process. Tech., 170 (2005) 350–362.

    Article  Google Scholar 

  31. A. Nader, P. Farhang and C. John, Forming of AA5182-O and AA5754-O at elevated temperatures using coupled thermo-mechanical finite element models, Int. J. Plasticity, 23 (2007) 841–875.

    Article  Google Scholar 

  32. B. Modi and D. R. Kumar, Development of a hydroforming set up for deep drawing of square cups with variable blank holding force technique, Int. J. Adv. Manuf. Technol., 66 (2013) 1159–1169.

    Article  Google Scholar 

  33. D. C. Chen and C. F. Chen, Use of taguchi method to develop a robust design for the shape rolling of porous sectioned sheet, J. Mater. Process. Tech., 177 (2006) 104–108.

    Article  Google Scholar 

  34. M. J. Davidson and K. Balasubramanian, Experimental investigation on flow-forming of AA6061 alloy-A Taguchi approach, J. Mater. Process. Tech., 200 (2008) 283–287.

    Article  Google Scholar 

  35. A. K. Sharma and D. K. Rout, Finite element analysis of sheet hydromechanical forming of circular cup, J. Mater. Process. Tech., 209 (2009) 1445–1453.

    Article  Google Scholar 

  36. B. Modi and D. R. Kumar, Effect of friction and lubrication on formability of AA5182 alloy in hydroforming of square cups, Mater. Sci. Forum, 762 (2013) 621–626.

    Article  Google Scholar 

  37. R. Padmanabhan, M. C. Oliveira, J. L. Alves and L. F. Menezes, Influence of process parameters on the deep drawing of stainless steel, Finite Elem. Anal. Des., 43 (2007) 1062–1067.

    Article  Google Scholar 

  38. F. Barlat and J. I. Lian, Plastic behavior and stretchability of sheet metals. Part-I: A yield function for orthotropic sheets under plane stress conditions, Int. J. Plasticity, 5 (1989) 51–56.

    Article  Google Scholar 

  39. K. P. Rao and C. L. Xie, A comparative study on the performance of boric acid with several conventional lubricants in metal forming processes, Tribol. Int., 39 (2006) 663–668.

    Article  Google Scholar 

  40. M. Javadi and M. Tajdari, Experimental investigation of the friction coefficient between aluminum and steel, Mater. Sci., 24 (2006) 305–310.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ravi Kumar.

Additional information

Recommended by Associate Editor Young Whan Park

Bharatkumar Modi was a research scholar in the Department of Mechanical Engineering, Indian Institute of Technology Delhi, India when this work was carried out. He is presently a Professor of Mechanical Engineering, Nirma University, Ahmedabad, India.

D. Ravi Kumar is a Professor of Mechanical Engineering, Indian Institute of Technology Delhi, India. His research interests include sheet metal forming, finite element analysis, hydroforming, lightweight materials and severe plastic deformation techniques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modi, B., Kumar, D.R. Optimization of process parameters to enhance formability of AA 5182 alloy in deep drawing of square cups by hydroforming. J Mech Sci Technol 33, 5337–5346 (2019). https://doi.org/10.1007/s12206-019-1026-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-019-1026-2

Keywords

Navigation