Skip to main content
Log in

Thermocapillary migration of a fluid compound droplet

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Compound and simple droplets have been studied and appeared in many life applications, e.g., drug processing and microfluidic systems. Many studies have been conducted on the thermocapillary effects on simple droplets, but similar studies on compound droplets are quite rare. Filling this missing gap, this paper presents the front-tracking-based simulation results of the thermocapillary effects on compound droplets in a certain limited domain. The compound droplet consists of a single inner core that is initially concentric with the outer one. Various dimensionless parameters including Reynolds number from 1 to 50, Marangoni number from 1 to 100, droplet radius ratio from 0.3 to 0.8, and viscosity ratios from 0.1 to 6.4 are varied to reveal their influences on the migration of a compound droplet from cold to hot regions. Initially, the inner droplet moves faster than the outer one, and when the leading surface of the inner droplet touches the outer one, the inner and outer droplets migrate at the same speed. The effects of these parameters on the compound droplet eccentricity are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Wang, H. Jing and Y. Wang, Possible effects of complex internal structures on the apparent viscosity of multiple emulsions, Chem. Eng. Sci., 135 (2015) 381–392.

    Article  Google Scholar 

  2. L. Zhang, J. Aoki and B. G. Thomas, Inclusion removal by bubble flotation in a continuous casting mold, Metall. Mater. Trans. B, 37(3) (2006) 361–379.

    Article  Google Scholar 

  3. D. R. Uhlmann, Glass processing in a microgravity environment, MRS Online Proceedings Library, 9(1) (1981) 269–278.

    Article  Google Scholar 

  4. T. S. Sammarco and M. A. Burns, Thermocapillary pumping of discrete drops in microfabricated analysis devices, AIChE Journal, 45(2) (1999) 350–366.

    Article  Google Scholar 

  5. M. R. de Saint Vincent, R. Wunenburger and J.-P. Delville, Laser switching and sorting for high speed digital microfluidics, Appl. Phys. Lett., 92(15) (2008) 154105.

    Article  Google Scholar 

  6. B. Sobac, A. Rednikov, S. Dorbolo and P. Colinet, Self-propelled Leidenfrost drops on a thermal gradient: a theoretical study, Phys. Fluids, 29(8) (2017) 082101.

    Article  Google Scholar 

  7. N. O. Young, J. S. Goldstein and M. J. Block, The motion of bubbles in a vertical temperature gradient, J. Fluid Mech., 6(3) (1959) 350–356.

    Article  Google Scholar 

  8. R. S. Subramanian, Slow migration of a gas bubble in a thermal gradient, AlChE Journal, 27(4) (1981) 646–654.

    Article  Google Scholar 

  9. H. Haj-Hariri, A. Nadim and A. Borhan, Effect of inertia on the thermocapillary velocity of a drop, J. Colloid Interf. Sci., 140(1) (1990) 277–286.

    Article  Google Scholar 

  10. R. Balasubramaniam and A.-T. Chai, Thermocapillary migration of droplets: an exact solution for small marangoni numbers, J. Colloid Interf. Sci., 119(2) (1987) 531–538.

    Article  Google Scholar 

  11. N. Shankar and R. S. Subramanian, The stokes motion of a gas bubble due to interfacial tension gradients at low to moderate Marangoni numbers, J. Colloid Interf. Sci., 123(2) (1988) 512–522.

    Article  Google Scholar 

  12. J. Szymczyk and J. Siekmann, Numerical calculation of the thermocapillary motion of a bubble under microgravity, Chem. Eng. Commun., 69(1) (1988) 129–147.

    Article  Google Scholar 

  13. R. Balasubramaniam and J. E. Lavery, Numerical simulation of thermocapillary bubble migration under microgravity for large reynolds and marangoni numbers, Numer. Heat Tr. A-Appl., 16(2) (1989) 175–187.

    Article  Google Scholar 

  14. Z. Yin, P. Gao, W. Hu and L. Chang, Thermocapillary migration of nondeformable drops, Phys. Fluids, 20(8) (2008) 082101.

    Article  Google Scholar 

  15. J. C. Chen and Y. T. Lee, Effect of surface deformation on thermocapillary bubble migration, AIAA Journal, 30(4) (1992) 993–998.

    Article  Google Scholar 

  16. S. W. J. Welch, Transient thermocapillary migration of deformable bubbles, J. Colloid Interf. Sci., 208(2) (1998) 500–508.

    Article  Google Scholar 

  17. H. J. Keh and L. S. Chen, Droplet interactions in thermocapillary migration, Chem. Eng. Sci., 48(20) (1993) 3565–3582.

    Article  Google Scholar 

  18. R. Sun and W.-R. Hu, The thermocapillary migrations of two bubbles in microgravity environment, J. Colloid Interf. Sci., 255(2) (2002) 375–381.

    Article  Google Scholar 

  19. S. Nas and G. Tryggvason, Thermocapillary interaction of two bubbles or drops, Int. J. Multiphase Flow, 29(7) (2003) 1117–1135.

    Article  Google Scholar 

  20. S. S. Kalichetty, T. Sundararajan and A. Pattamatta, Thermocapillary migration and interaction dynamics of droplets in a constricted domain, Phys. Fluids, 31(2) (2019) 022106.

    Article  Google Scholar 

  21. T. V. Vu, H. Takakura, J. C. Wells and T. Minemoto, Production of hollow spheres of eutectic tin-lead solder through a coaxial nozzle, J. Solid Mech. Mater. Eng., 4(10) (2010) 1530–1538.

    Article  Google Scholar 

  22. K. D. Bhagat, T. V. Vu, J. C. Wells, H. Takakura, Y. Kawano and F. Ogawa, Production of hollow germanium alloy quasispheres through a coaxial nozzle, Jpn. J. Appl. Phys., 58(6) (2019) 068001.

    Article  Google Scholar 

  23. J. M. Kendall, M. C. Lee and T. G. Wang, Metal shell technology based upon hollow jet instability, J. Vac. Sci. Technol., 20(4) (1982) 1091–1093.

    Article  Google Scholar 

  24. J. H. Nadler, T. H. Sanders Jr. and J. K. Cochran, Aluminum hollow sphere processing, Mater. Sci. Forum, 331–337 (2000) 495–500.

    Article  Google Scholar 

  25. M. Iqbal, N. Zafar, H. Fessi and A. Elaissari, Double emulsion solvent evaporation techniques used for drug encapsulation, Int. J. Pharm., 496(2) (2015) 173–190.

    Article  Google Scholar 

  26. J. Yang, Q. Zhou, Z. Huang, Z. Gu, L. Cheng, L. Qiu and Y. Hong, Mechanisms of in vitro controlled release of astaxanthin from starch-based double emulsion carriers, Food Hydrocoll. (2021) 106837.

  27. S.-H. Hu, R.-H. Fang, Y.-W. Chen, B.-J. Liao, I.-W. Chen and S.-Y. Chen, Photoresponsive protein-graphene-protein hybrid capsules with dual targeted heat-triggered drug delivery approach for enhanced tumor therapy, Adv. Funct. Mater., 24(26) (2014) 4144–4155.

    Article  Google Scholar 

  28. T. V. Vu, L. V. Vu, B. D. Pham and Q. H. Luu, Numerical investigation of dynamic behavior of a compound drop in shear flow, J. Mech. Sci. Technol., 32(5) (2018) 2111–2117.

    Article  Google Scholar 

  29. G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas and Y.-J. Jan, A front-tracking method for the computations of multiphase flow, J. Comput. Phys., 169(2) (2001) 708–759.

    Article  MathSciNet  Google Scholar 

  30. H. Liu, Y. Zhang and A. J. Valocchi, Modeling and simulation of thermocapillary flows using lattice Boltzmann method, J. Comput. Phys., 231(12) (2012) 4433–4453.

    Article  MathSciNet  Google Scholar 

  31. G. Tryggvason, R. Scardovelli and S. Zaleski, Direct Numerical Simulations of Gas-Liquid Multiphase Flows, Cambridge University Press, Cambridge (2011).

    MATH  Google Scholar 

  32. T.-V. Vu, T. V. Vu, C. T. Nguyen and P. H. Pham, Deformation and breakup of a double-core compound droplet in an axisymmetric channel, Int. J. Heat Mass Transfer, 135 (2019) 796–810.

    Article  Google Scholar 

  33. M. Lu, J. Lu, Y. Zhang and G. Tryggvason, Numerical study of thermocapillary migration of a bubble in a channel with an obstruction, Phys. Fluids, 31(6) (2019) 062101.

    Article  Google Scholar 

  34. T. V. Vu and P. H. Pham, Numerical study of a compound droplet moving toward a rigid wall in an axisymmetric channel, Int. J. Heat Fluid Flow, 82 (2020) 108542.

    Article  Google Scholar 

  35. Y. Chen, X. Liu and M. Shi, Hydrodynamics of double emulsion droplet in shear flow, Appl. Phys. Lett., 102(5) (2013) 051609.

    Article  Google Scholar 

  36. C. Zhou, P. Yue and J. J. Feng, Deformation of a compound drop through a contraction in a pressure-driven pipe flow, Int. J. Multiphase Flow, 34(1) (2008) 102–109.

    Article  Google Scholar 

  37. S. Tasoglu, G. Kaynak, A. J. Szeri, U. Demirci and M. Muradoglu, Impact of a compound droplet on a flat surface: a model for single cell epitaxy, Phys. Fluids, 22(8) (2010) 082103.

    Article  Google Scholar 

Download references

Acknowledgments

This research is funded by the Vietnam National Foundation for Science and Technology Development under grant number 107.03-2019.307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong V. Vu.

Additional information

Vinh T. Nguyen is a Ph.D. student of the Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam. He received his M.S. in Mechanical Engineering from the Keio University, Japan. His research interests include aerospace structures, multiphase and free surface flows, heat transfer, and numerical methods.

Truong V. Vu is a Lecturer of the Faculty of Vehicle and Energy Engineering, Phenikaa University, Hanoi, Vietnam. He received his Ph.D. in Integrated Science and Engineering from the Ritsumeikan University, Japan. His research interests include multiphase and free surface flows, phase change heat transfer, and numerical methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.T., Vu, T.V., Nguyen, P.H. et al. Thermocapillary migration of a fluid compound droplet. J Mech Sci Technol 35, 4033–4044 (2021). https://doi.org/10.1007/s12206-021-0816-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0816-5

Keywords

Navigation