Skip to main content
Log in

Abstract

Let \((S,{\mathcal {L}})\) be a smooth, irreducible, projective, complex surface, polarized by a very ample line bundle \({\mathcal {L}}\) of degree \(d > 35\). In this paper we prove that \(K^2_S\ge -d(d-6)\). The bound is sharp, and \(K^2_S=-d(d-6)\) if and only if d is even, the linear system \(|H^0(S,{\mathcal {L}})|\) embeds S in a smooth rational normal scroll \(T\subset {\mathbb {P}}^5\) of dimension 3, and here, as a divisor, S is linearly equivalent to \(\frac{d}{2}Q\), where Q is a quadric on T.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves, Volume I, A Series of Comprehensive Studies in Mathematics, p. 267. Springer, Berlin (1985)

    MATH  Google Scholar 

  2. Beauville, A.: Surfaces algébriques complexes. Astérisque 54, société mathématiques de france (1978)

  3. Braun, R., Floystad, G.: A bound for the degree of smooth surfaces in \({\mathbb{P}}^4\) not of general type. Compositio Math. 93(2), 211–229 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Chiantini, L., Ciliberto, C.: A few remarks on the lifting problem. Astérisque 218, 95–109 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Chiantini, L., Ciliberto, C., Di Gennaro, V.: The genus of projective curves. Duke Math. J. 70(2), 229–245 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Di Gennaro, V.: A note on smooth surfaces in \({\mathbb{P}}^4\). Geometriae Dedicata 71, 91–96 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Di Gennaro, V.: Self-intersection of the canonical bundle of a projective variety. Commun. Algebra 29, 141–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eisenbud, D., Harris, J.: Curves in Projective Space. Sém. Math. Sup. \(85\) Les Presses de l’Université de Montréal (1982)

  9. Ellingsrud, G., Peskine, C.: Sur les surfaces lisses de \({\mathbb{P}}_4\). Invent. Math. 95, 1–11 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gallego, F.J., Giraldo, L., Sols, I.: Bounding families of ruled surfaces. Proc. Am. Math. Soc. 124(10), 2943–2951 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gruson, L., Peskine, C.: Genre des courbes dans l’espace projectif. Algebraic Geometry: Proceedings, Norway, 1977, Lecture Notes in Math., vol. 687, pp. 31–59. Springer, New York (1978)

  12. Harris, J.: A bound on the geometric genus of projective varieties. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8(4), 35–68 (1981)

    MathSciNet  MATH  Google Scholar 

  13. Hartshorne, R.: Algebraic Geometry, GTM, vol. 52. Springer, Berlin (1983)

    MATH  Google Scholar 

  14. Mezzetti, E., Raspanti, I.: A Laudal-type theorem for surfaces in \({\mathbb{P}}^4\). Rend. Sem. Mat. Univ. Politec. Torino 48, 529–537 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Roth, L.: On the projective classification of surfaces. Proc. London Math. Soc. 42, 142–170 (1937)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sommese, A.J., Van de Ven, A.: On the adjunction mapping. Math. Ann. 278, 593–603 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zak, F.L.: Castelnuovo bounds for higher dimensional varieties. Compositio Math. 148, 1085–1132 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zak, F.L.: Asymptotic behaviour of numerical invariants of algebraic varieties. J. Eur. Math. Soc. 14, 255–271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Franco.

Additional information

Dedicated to Philippe Ellia on his sixtieth birthday.

Appendix

Appendix

  1. (i)

    With the notation as in the proof of Proposition 2.2, consider the function

    $$\begin{aligned} \phi (a):= & {} -6a^3+a^2(-9m+5+3\epsilon )+a(2m(3\epsilon -4)-6\epsilon +10)\\&+3m^3+m^2(3\epsilon -13)+m(10-6\epsilon )+8. \end{aligned}$$

    We are going to prove that if \(d\ge 18\) and \(-m\le a \le \frac{1}{2}(m+\epsilon -1)\), then \(\phi (a)\ge -d(d-6)\), and \(\phi (a)=-d(d-6)\) if and only if \(a=a^*\). To this purpose we derive with respect to a:

    $$\begin{aligned} \phi '(a)=-18a^2+2a(-9m+5+3\epsilon )+2m(3\epsilon -4)-6\epsilon +10. \end{aligned}$$

    This is a degree 2 polynomial in the variable a, whose discriminant is:

    $$\begin{aligned} \Delta =324m^2-936m+216m\epsilon +110+114\epsilon +36\epsilon ^2, \end{aligned}$$

    which is \(>0\) when \(m\ge 3\), hence when \(d\ge 10\) (compare with (14)). Denote by \(a_1\) and \(a_2\) the real roots of the equation \(\phi '(a)=0\), with \(a_1<a_2\), and let I be the open interval \(I=(a_1,a_2)\). Then \(\phi '(a)>0\) if and only if \(a\in I\). In particular \(\phi (a)\) is strictly increasing for \(a\in I\), and strictly decreasing for \(a\not \in I\). Now observe that

    $$\begin{aligned} \phi (-m)=8, \quad \phi (-m+1)=-9m+17-3\epsilon , \quad \phi (-m+2)=0. \end{aligned}$$

    Notice that \(-9m+17-3\epsilon \ge -9m+11\) because \(0\le \epsilon \le 2\), \(-9m+11\ge -9\frac{d-1}{3}+11\) since \(\frac{d-1}{3}\le m\le \frac{d-3}{3}\), and \(-3(d-1)+11>-d(d-6)\) if \(d>7\). So for \(a\in \{-m,-m+1,-m+2\}\) we have \(K^2_S>-d(d-6)\). Moreover we have \(\phi '(-m+2)=18m+6\epsilon -42>0\) if \(d\ge 12\), and \(\phi '(-1)=10m+6m\epsilon -12\epsilon -18>0\) if \(d\ge 9\). Therefore \([-m+2,-1]\subset I\) and so \(\phi (a)\ge \phi (-m+2)=0>-d(d-6)\) for \(-m\le a\le -1\) and \(d>12\). We also have:

    $$\begin{aligned} \phi (0)=(m-2)(3m^2-7m+3m\epsilon -4), \end{aligned}$$

    which is \(\ge 0\) for \(m\ge 3\), hence for \(d\ge 12\). And

    $$\begin{aligned} \phi (1)=(m-1)(3m^2-10m+3m\epsilon +3\epsilon -17), \end{aligned}$$

    which is \(\ge 0\) for \(m\ge 5\), hence for \(d\ge 18\). Moreover we have:

    $$\begin{aligned} \phi '(1)=2-26m+6m\epsilon <0. \end{aligned}$$

    Therefore \(\phi (a)\) is strictly decreasing for \(a\ge 1\). It follows that in the range \(1\le a \le a^*:=\left[ \frac{m+\epsilon -1}{2}\right] \), the function \(\phi \) takes its minimum exactly when \(a=a^*\). Define p and q by dividing:

    $$\begin{aligned} m+\epsilon -1=2p+q, \quad 0\le q\le 1, \end{aligned}$$

    so that \(p=a^*\). Notice that d is even if and only if \(q=0\). We have:

    $$\begin{aligned} \phi (a^*)={\left\{ \begin{array}{ll} -d(d-6) &{} {{\mathrm{if}\; q=0}}\\ -\frac{1}{4}d^2+\frac{1}{2}d+\frac{35}{4} &{} {{\mathrm{if}\; q=1.}} \end{array}\right. } \end{aligned}$$

    Since when \(d>5\) we have

    $$\begin{aligned} -\frac{1}{4}d^2+\frac{1}{2}d+\frac{35}{4}>-d(d-6), \end{aligned}$$

    by previous analysis it follows that, for any integer \(-m\le a \le \frac{m+\epsilon -1}{2}\), one has \(\phi (a)\ge -d(d-6)\), and \(\phi (a)=-d(d-6)\) if and only if d is even and \(a=\frac{m+\epsilon -1}{2}\).

  2. (ii)

    We are going to prove that inequality (12) implies inequality (13), and that (13) is impossible for \(d>24\). First we recall that

    $$\begin{aligned} d-1=4p+q, \quad 0\le q\le 3, \end{aligned}$$

    and that

    $$\begin{aligned} {{t=0\, \mathrm{for}\, 0\le q \le 2, \quad \mathrm{and} \quad t=1\; \mathrm{for}\; q=3.}} \end{aligned}$$
    (15)

    Next we recall that from the definition (10) of the function k(i) we have (for \(d\ge 9\)):

    $$\begin{aligned} \sum _{i=1}^{d-4}(i-1)(d-k(i))= & {} \sum _{i=1}^{p}(i-1)(d-4i)+p(d-k(p+1))\nonumber \\= & {} {\left( {\begin{array}{c}p\\ 2\end{array}}\right) }d-8{\left( {\begin{array}{c}p+1\\ 3\end{array}}\right) }+tp. \end{aligned}$$
    (16)

    Taking into account that

    $$\begin{aligned} p=\frac{d-1-q}{4}, \end{aligned}$$

    and therefore that

    $$\begin{aligned} {\left( {\begin{array}{c}p\\ 2\end{array}}\right) }=\frac{1}{32}\left( d^2-6d-2dq+5+6q+q^2\right) \end{aligned}$$

    and that

    $$\begin{aligned} 8{\left( {\begin{array}{c}p+1\\ 3\end{array}}\right) }=\frac{1}{48}\left( d^3-3d^2-3d^2q-13d+6dq+3dq^2+15+13q-3q^2-q^3\right) , \end{aligned}$$

    from (16) we get:

    $$\begin{aligned}&\sum _{i=1}^{d-4}(i-1)(d-k(i))=\frac{d}{32}\left( d^2-6d-2dq+5+6q+q^2\right) \\&\qquad -\frac{1}{48}\left( d^3-3d^2-3d^2q-13d+6dq+3dq^2+15+13q-3q^2-q^3\right) \\&\qquad +t\left( \frac{d-1-q}{4}\right) \\&\quad =\frac{1}{96}\left( d^3-12d^2+d(41+6q-3q^2+24t)-30-26q+6q^2+2q^3-24t-24tq\right) . \end{aligned}$$

    Inserting this equality and (11) into (12), we get:

    $$\begin{aligned}&(d-3)\left( \frac{1}{8}d^2-\frac{3}{4}d+1\right) \\&\quad \le -\frac{1}{96}\left( d^3-12d^2+d(41+6q-3q^2+24t)-30\right. \\&\quad \left. -26q+6q^2+2q^3-24t-24tq\right) \\&\qquad +(d-4)\left( \frac{1}{8}d^2-\frac{1}{2}d+\frac{3}{8}+\frac{1}{4}q-\frac{1}{8}q^2+t\right) . \end{aligned}$$

    Multiplying by 96 and simplifying we obtain (13), i.e. that

    $$\begin{aligned}&-d^3+24d^2+(-9q^2+18q-125+72t)d-2q^3+42q^2\\&\quad -70q+174-360t+24tq \ge 0. \end{aligned}$$

    Finally denote by C(dqt) the left member of (13), i.e. set

    $$\begin{aligned}&C(d,q,t):=-d^3+24d^2+(-9q^2+18q-125+72t)d-2q^3\\&\quad +42q^2-70q+174-360t+24tq. \end{aligned}$$

    Then we have (compare with (15)):

    $$\begin{aligned} C(d,q,t)={\left\{ \begin{array}{ll} d^2(24-d)-125d+174 &{}\quad {{\mathrm{if}\; (q,t)=(0,0)}}\\ d^2(24-d)-116d+144 &{}\quad {{\mathrm{if}\; (q,t)=(1,0)}}\\ d^2(24-d)-125d+186 &{}\quad {{\mathrm{if}\; (q,t)=(2,0)}}\\ d^2(24-d)-80d &{}\quad {{\mathrm{if}\; (q,t)=(3,1)}}, \end{array}\right. } \end{aligned}$$

    from which it is evident that (13) is impossible for \(d>24\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Gennaro, V., Franco, D. A lower bound for \(K^2_S\) . Rend. Circ. Mat. Palermo, II. Ser 66, 69–81 (2017). https://doi.org/10.1007/s12215-016-0273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-016-0273-7

Keywords

Mathematics Subject Classification

Navigation