Skip to main content
Log in

Regularized solution of an ill-posed biharmonic equation

  • Published:
Rendiconti del Circolo Matematico di Palermo Series 2 Aims and scope Submit manuscript

Abstract

In this paper we consider a severely ill posed problem associated with a two dimensional homogeneous biharmonic equation. By perturbing the original problem and using a two parameters regularization method, we get a stable solution which converges to the solution of the considered problem. Under some priori bound assumptions, different errors estimates for the regularized solution are obtained. These last ones depend on the choice of the space of the exact solution. To show the effectiveness of the proposed regularization method some numerical results are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andersson, L.E., Elfving, T., Golub, G.H.: Solution of biharmonic equations with application to radar imaging. J. Comput. Appl. Math. 94(2), 153–180 (1998)

    Article  MathSciNet  Google Scholar 

  2. Benrabah, A., Boussetila, N.: Modified nonlocal boundary value problem method for an ill-posed problem for the biharmonic equation. Inverse Probl. Sci. Eng 27, 340–368 (2019)

    Article  MathSciNet  Google Scholar 

  3. Benrabah, A., Boussetila, N., Rebbani, F.: Regularization method for an ill-posed Cauchy problem for elliptic equations. J. Inverse Ill-Posed Probl. 25, 288–311 (2017)

    Article  MathSciNet  Google Scholar 

  4. Benrabah, A., Boussetila, N., Rebbani, F.: Modified auxiliary boundary conditions method for an ill-posed problem for the homogeneous biharmonic equation. Math. Methods Appl. Sci. 43, 358–383 (2020)

    Article  MathSciNet  Google Scholar 

  5. Ehrlich, L.N., Gupta, M.M.: Some difference schemes for the biharmonic equation. SIAM J. Numer. Anal. 12(5), 773–790 (1975)

    Article  MathSciNet  Google Scholar 

  6. Berchio, E., Gazzola, F., Weth, T.: Critical growth biharmonic elliptic problems under Steklov-type boundary conditions. Adv. Differ. Equ. 12, 381–406 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Berchio, E., Gazzola, F., Weth, T.: Critical growth biharmonic elliptic problems under Steklov-type boundary conditions. J. Comput. Appl. Math. 160, 386–399 (2009)

    MATH  Google Scholar 

  8. Cheng, X.L., Han, W., Huang, H.C.: Some mixed finite element methods for biharmonic equation. J. Comput. Appl. Math. 126, 91–109 (2000)

    Article  MathSciNet  Google Scholar 

  9. Choudhury, A.P., Heck, H.: Stability of the inverse boundary value problem for the biharmonic operator: logarithmic estimates. J. Inverse Ill-Posed Probl. 25, 251–263 (2017)

    Article  MathSciNet  Google Scholar 

  10. Clark, G.W., Oppenheimer, S.F.: Quasireversibility methods for non-well posed problems. Electron. J. Differ. Eqn. 8, 1–9 (1994)

    MATH  Google Scholar 

  11. Constanda, C., Doty, D.: Bending of elastic plates with transverse shear deformation: the Neumann problem. Math. Methods Appl. Sci. special issue (2018). https://doi.org/10.1002/mma.4704

  12. Dang, Q.A., Mai, X.T.: The Cauchy problem for elliptic equations. Inverse Prob. 25, 055002 (2009)

    Article  MathSciNet  Google Scholar 

  13. Dang, Q.A., Mai, X.T.: Iterative method for solving a problem with mixed boundary conditions for biharmonic equation arising in fracture mechanics. Bol. Soc. Paran. Mat. v. 31, 65–78 (2013)

    MathSciNet  MATH  Google Scholar 

  14. Hào, D.N., Duc, N.V., Sahli, H.: A non-local boundary value problem method for parabolic equations backward in time. J. Math. Anal. Appl. 345(2), 805–815 (2008)

    Article  MathSciNet  Google Scholar 

  15. Gazzola, F.: On the moments of solutions to linear parabolic equations involving the biharmonic operator. Discret. Contin. Dyn. Syst. 33, 3583–3597 (2013)

    Article  MathSciNet  Google Scholar 

  16. Gazzola, F., Grunau, H.C., Sweers, G.: Polyharmonic Boundary Value Problems. Springer, Berlin (2010)

    Book  Google Scholar 

  17. Hadamard, J.: Lecture Note on Cauchy’s Problem in Linear Partial Differential Equations. Yale Uni Press, New Haven (1923)

    MATH  Google Scholar 

  18. Igor, V., Andrianov, J.A., Vladyslav, V.D., Andrey, O.I.: Asymptotic Methods in the Theory of Plates with Mixed Boundary Conditions. John Wiley and Sons, Ltd, London (2014)

    MATH  Google Scholar 

  19. Kal’menov, T., Iskakova, U.: On an ill-posed problem for a biharmonic equation. Filomat 31, 1051–1056 (2017)

    Article  MathSciNet  Google Scholar 

  20. Kal’menov, T.S., Sadybekov, M.A., Iskakova, U.A.: On a criterion for the solvability of one ill-posed problem for the biharmonic equation. J. Inverse Ill-Posed Probl. 24, 777–783 (2016)

    Article  MathSciNet  Google Scholar 

  21. Karachik, V.V.: Normalized system of functions with respect to the Laplace operator and its applications. J. Math. Anal. Appl. 287, 577–592 (2003)

    Article  MathSciNet  Google Scholar 

  22. Karachik, V.V., Antropova, N.A.: Polynomial solutions of the Dirichlet problem for the biharmonic equation in the ball. Differ. Equ. 49, 251–256 (2013)

    Article  MathSciNet  Google Scholar 

  23. Karachik, V.V., Antropova, N.A.: Solvability conditions for the Neumann problem for the homogeneous polyharmonic equation. Differ. Equ. 50, 1449–1456 (2014)

    Article  MathSciNet  Google Scholar 

  24. Lai, M.C., Liu, H.C.: Fast direct solver for the biharmonic equation on a disk and its application to incompressible flows. Appl. Math. Comput. 164, 679–695 (2005)

    MathSciNet  MATH  Google Scholar 

  25. Lesnic, D., Zeb, A.: The method of fundamental solution for an inverse internal boundary value problem for the biharmonic equation. Int. J. Comput. Methods 6, 557–567 (2009)

    Article  MathSciNet  Google Scholar 

  26. Li, J.: Application of radial basis meshless methods to direct and inverse biharmonic boundary value problems. Commun. Numer. Methods. Eng. 21, 169–182 (2005)

    Article  MathSciNet  Google Scholar 

  27. Luigi, P.: A note on the Neumann eigenvalues of the biharmonic operator. Math. Methods Appl. Sci. 41, 1005–1012 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Lu, S., Pereverzev, S.V.: Regularization Theory for Ill-posed Problems: Selected Topics. Walter de Gruyter GmbH (2013). https://doi.org/10.1515/9783110286496

  29. Luan, T.N., Khieu, T.T., Khanh, T.Q.: A filter method with a priori and a posteriori parameter choice for the regularization of Cauchy problems for biharmonic equations. Numer. Algorithms (2020a). https://doi.org/10.1007/s11075-020-00951-4

  30. Luan, T.N., Khieu, T.T., Khanh, T.Q.: Regularized solution of the Cauchy problem for the biharmonic equation. Bull. Malays. Math. Sci. Soc. 43, 757–782 (2020)

    Article  MathSciNet  Google Scholar 

  31. Marin, L., Lesnic, D.: The method of fundamental solutions for inverse boundary value problems associated with the two-dimensional biharmonic equation. Math. Comput. Model. 42(3), 261–278 (2005)

    Article  MathSciNet  Google Scholar 

  32. Mel’lnikova, I.V., Filinkov, A.: Methods for non-well posed problems. In: Symposium on Non-Well-Posed Problems and Logarithmic Convexity. Lecture Notes in Mathematics, vol. 316, pp. 161–176. Springer, Berlin (1973)

  33. Mel’lnikova, I.V., Filinkov, A.: Abstract Cauchy problems: three approaches. In: Chapman and Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, vol. 120. Chapman and Hall/CRC, Boca Raton (2001)

  34. Ming-Gong, l, Lih-Jier, Y., Zi-Cai, L., Po-Chun, C.: Mixed types of boundary conditions at corners of linear elastostatics and their numerical solutions. Eng. Anal. Bound. Elem. 35, 1265–1278 (2011)

    Article  MathSciNet  Google Scholar 

  35. Nguyen, H.T., Kirane, M., Quoc, N.D.H., Vo, V.A.: Approximation of an inverse initial problem for a biparabolic equation. Mediterr. J. Math. 15 (2018)

  36. Nguyen, H.T., Lesnic, D., Tran, Q.V., Vo, V.A.: Regularization of the semilinear sideways heat equation. IMA J. Appl. Math. 84, 258–291 (2019)

    Article  MathSciNet  Google Scholar 

  37. Nikolai, V.P., Anton, A.D., Sandra, M.T.: Slip behavior in liquid films on surfaces of patterned wettability: comparison between continuum and molecular dynamics simulations. Phys. Rev. 71, 041608 (2005)

    Google Scholar 

  38. Schaefer, P.: On the Cauchy problem for the nonlinear biharmonic equation. J. Math. Anal. Appl. 36(3), 660–673 (1971)

    Article  MathSciNet  Google Scholar 

  39. Schaefer, P.: On existence in the Cauchy problem for the biharmonic equation. Compos. Math. 28, 203–207 (1974)

    Article  MathSciNet  Google Scholar 

  40. Selvadurai, A.P.S.: Partial Differential Equations in Mechanics 2: The Biharmonic Equation, Poissons Equation. Springer, Cham (2013)

    Google Scholar 

  41. Selvadurai, A.P.S.: Completion problem for biharmonic equation for rectangular domain. Analele Universiţŏtii de Vest, Timişoara LV. 129–147 (2017)

  42. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951)

    MATH  Google Scholar 

  43. Trong, D.D., Tuan, N.H.: A nonhomogeneous backward heat problem: regularization and error estimates. Electron. J. Differ. Equ. 2008(33), 1–14 (2008)

    MathSciNet  MATH  Google Scholar 

  44. Tuan, N.H., Thang, L.D., Khoa, V.A.: A modified integral equation method of the nonlinear elliptic equation with globally and locally Lipschitz source. Appl. Math. Comput. 265, 245–265 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Tuan, N.H., Au, V.V., Khoa, V.A., Lesnic, D.: Identification of the population density of a species model with nonlocal diffusion and nonlinear reaction. Inverse Prob. 33, 40 (2017)

    Article  MathSciNet  Google Scholar 

  46. Zouyed, F., Rebbani, F.: A modified quasi-boundary value method for an ultraparabolic ill-posed problem. J. Inverse Ill-Posed Probl. 22, 449–466 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for their constructive comments and remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Benrabah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamida, S., Benrabah, A. Regularized solution of an ill-posed biharmonic equation. Rend. Circ. Mat. Palermo, II. Ser 70, 1709–1731 (2021). https://doi.org/10.1007/s12215-020-00584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12215-020-00584-5

Keywords

Mathematics Subject Classification

Navigation