Skip to main content
Log in

Thermocapillary Convection in a Binary Mixture with Moderate Prandtl Number in a Shallow Annular Pool

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

This paper presented a series of numerical simulations on thermocapillary convection for mixed toluene/hexane solution with mass fraction of \(c_{0}= 26.27\)% in a shallow annular pool. The Prandtl number of the binary solution is 5.54. Results indicate that when the annular pool subjects to a radial temperature gradient, the solute shifts toward the inner wall under the Soret effect, which leads to a concentration gradient with the opposite direction to the temperature gradient. With the increase of surface heat dissipation, thermocapillary convection is enhanced and the flow is more prone to destabilization. Therefore, the critical thermocapillary Reynolds number of the flow destabilization and the corresponding critical oscillation frequency all decrease, but the critical wave number increases. After flow destabilization, the concentration fluctuation similar to the temperature fluctuation on the free surface appears. No matter the free surface is adiabatic or not, the flow always undergoes a transition from two-dimensional steady axisymmetric flow to the hydrothermal waves, and then to chaos with the increase of thermocapillary Reynolds number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Bi :

Biot number

C :

Mass fraction

d :

Depth, m

D :

Mass diffusivity of species, m2/s

F :

Dimensionless oscillation frequency

h :

Convective heat-transfer coefficient, W/(m2 ⋅K)

m :

Azimuthal wave number

p :

Pressure, Pa

P :

Dimensionless pressure

Pr :

Prandtl number

r :

Radius, m

R :

Dimensionless radius

R e C :

Solutalcapillary Reynolds number

R e T :

Thermocapillary Reynolds number

R σ :

Capillary ratio

S T :

Soret coefficient, 1/K

t :

Time, s

T :

Temperature, K

v :

Velocity, m/s

V :

Dimensionless velocity

V :

Dimensionless velocity vector

z :

Axial coordinate, m

Z :

Dimensionless axial coordinate

α :

Thermal diffusivity, m2/s

ε :

Aspect ratio

γ C :

Solutal coefficient of surface tension, N/m

γ T :

Temperature coefficient of surface tension, N/(m⋅K)

η :

Radius ratio

μ :

Dynamic viscosity, kg/(m⋅s)

ν :

Kinematic viscosity, m2/s

𝜃 :

Azimuthal coordinate, rad

ρ :

Density, kg/m3

τ :

Dimensionless time

ψ :

Dimensionless stream function

c:

Critical

i:

Inner

o:

Outer

R:

Radial

Z:

Axial

𝜃 :

Azimuthal

0:

Initial

References

  • Alex, S.M., Patil, P.R.: Effect of variable gravity field on Soret driven thermosolutal convection in a porous medium. Int. Commun. Heat Mass Transf. 28(4), 509–518 (2001)

    Article  Google Scholar 

  • Bazzi, H., Nguyen, C.T., Galanis, N.: Numerical study of the unstable thermocapillary flow in a silicon float zone under \(\mu \)-g, condition. Int. J. Therm. Sci. 40(8), 702–716 (2001)

    Article  Google Scholar 

  • Burguete, J., Mukolobwiez, N., Daviaud, F., Garnier, N., Chiffaudel, A.: Buoyant-thermocapillary instabilities in extended liquid layers subjected to a horizontal temperature gradient. Phys. Fluids 13(10), 2273–2787 (2001)

    Article  MATH  Google Scholar 

  • Camel, D., Tison, P., Garandet, J.P.: Experimental study of Marangoni flows in molten and solidifying Sn and Sn-Bi layers heated from the side. Eur. Phys. J. Appl. Phys. 18(3), 201–219 (2002)

    Article  Google Scholar 

  • Chen, J.C., Zhang, L., Li, Y.R., Yu, J.J.: Three-dimensional numerical simulation of pure solutocapillary flow in a shallow annular pool for mixture fluid with high Schmidt number. Microgravity Sci. Technol. 28(1), 49–57 (2016a)

    Article  Google Scholar 

  • Chen, J.C., Li, Y.R., Yu, J.J., Zhang, L., Wu, C.M.: Flow pattern transition of thermal–solutal capillary convection with the capillary ratio of -1 in a shallow annular pool. Int. J. Heat Mass Transf. 95, 1–6 (2016b)

    Article  Google Scholar 

  • Fornari, R.: Comprehensive Semiconductor Science and Technology, pp. 1–35. Elsevier, Amsterdam (2011)

    Book  Google Scholar 

  • Garnier, N., Chiffaudel, A.: Two dimensional hydrothermal waves in an extended cylindrical vessel. Eur. Phys. J. B 19(1), 87–95 (2001)

    Article  Google Scholar 

  • Herrero, H., Mancho, A.M.: Influence of aspect ratio in convection due to nonuniform heating. Phys. Rev. E 57(6), 7336–7339 (1998)

    Article  Google Scholar 

  • Hoyas, S., Mancho, A.M., Herrero, H., Garnier, N., Chiffaudel, A.: Bénard-Marangoni convection in a differentially heated cylindrical cavity. Phys. Fluids 17(5), 054104 (2005)

    Article  MATH  Google Scholar 

  • Iguchi, M., Ilegbusi, O.J.: Numerical Modeling of Multiphase Flows in Materials Processing, Modeling Multiphase Materials Processes, pp. 325–361. Springer, New York (2011)

    Book  MATH  Google Scholar 

  • Joly, F., Vasseur, P., Labrosse, G.: Soret-driven thermosolutal convection in a vertical enclosure. Int. Commun. Heat Mass Transf. 27(6), 755–764 (2000)

    Article  Google Scholar 

  • Kamotani, Y., Lee, J.H., Ostrach, S., Pline, A.: An experimental study of oscillatory thermocapillary convection in cylindrical containers. Phys. Fluids 4(5), 955–962 (1992)

    Article  Google Scholar 

  • Lavalley, R., Amberg, G., Alfredsson, H.: Experimental and numerical investigation of nonlinear thermocapillary oscillations in an annular geometry. Eur. J. Mech. B. Fluids 20(6), 771–779 (2001)

    Article  MATH  Google Scholar 

  • Li, Y.R., Peng, L., Akiyama, Y., Imaishi, N.: Three-dimensional numerical simulation of thermocapillary flow of moderate Prandtl number fluid in an annular pool. J. Cryst. Growth 259(4), 374–384 (2003)

    Article  Google Scholar 

  • Mancho, A.M., Herrero, H., Burguete, J.: Primary instabilities in convective cells due to nonuniform heating. Phys. Rev. E 56(3), 2916–2923 (1997)

    Article  Google Scholar 

  • Neitzel, G.P., Chang, K.T., Jankowski, D.F., Mittelmann, H.D.: Linear-stability theory of thermocapillary convection in a model of the float-zone crystal-growth process. Phys. Fluids 5(1), 108–114 (1993)

    Article  MATH  Google Scholar 

  • Pelacho, M.A., Burguete, J.: Temperature oscillations of hydrothermal waves in thermocapillary-buoyancy convection. Phys. Rev. E 59(1), 237–243 (1999)

    Article  Google Scholar 

  • Peng, L., Li, Y.R., Shi, W.Y., Imaishi, N.: Three-dimensional thermocapillary–buoyancy flow of silicone oil in a differentially heated annular pool. Int. J. Heat Mass Transf. 50, 872–880 (2007)

    Article  MATH  Google Scholar 

  • Shklyaev, S., Nepomnyashchy, A.A., Oron, A.: Three-dimensional oscillatory long-wave Marangoni convection in a binary liquid layer with the Soret effect: bifurcation analysis. Phys. Fluids 19(7), 072105 (2007)

    Article  MATH  Google Scholar 

  • Shklyaev, S., Nepomnyashchy, A.A., Oron, A.: Marangoni convection in a binary liquid layer with Soret effect at small Lewis number: Linear stability analysis. Phys. Fluids 21(5), 054101 (2009)

    Article  MATH  Google Scholar 

  • Sim, B.C., Zebib, A.: Thermocapillary convection in cylindrical liquid bridges and annuli. C.R. Mec. 332 (5–6), 473–486 (2004)

    Article  MATH  Google Scholar 

  • Smith, M.K.: Instabilities mechanisms in dynamic thermocapillary liquid layers. Phys. Fluids 29(10), 3182–3186 (1986)

    Article  Google Scholar 

  • Smith, M.K., Davis, S.H.: Instabilities of dynamic thermocapillary liquid layer. J. Fluid Mech. 132, 119–143 (1983)

    Article  MATH  Google Scholar 

  • Turner, J.S.: Multicomponent convection. Annu. Rev. Fluid Mech. 17, 11–44 (1985)

    Article  Google Scholar 

  • Torregrosa, A.J., Hoyas, S., Perez-Quiles, M.J., Mompo-Laborda, J.M.: Bifurcation diversity in an annular pool heated from below: Prandtl and Biot numbers effects. Commun. Comput. Phys. 13(2), 428–441 (2013)

    Article  Google Scholar 

  • Wang, J.S., Yan, J.J., Li, Y., Hu, S.H.: Experimental investigation of Marangoni condensation of ethanol-water mixture vapors on vertical tube. Heat Mass Transf. 45(12), 1533–1541 (2009)

    Article  Google Scholar 

  • Wang, F., Peng, L., Zhang, Q.Z.: Three-dimensional flow in a thin annular layer of silicon melt with bidirectional temperature gradients. Cryst. Res. Technol. 49(10), 829–835 (2014)

    Article  Google Scholar 

  • Wang, F., Peng, L., Zhang, Q.Z.: Effect of the vertical heat transfer on the thermocapillary convection in a shallow annular pool. Microgravity Sci. Technol. 27(2), 107–114 (2015)

    Article  Google Scholar 

  • Schwabe, D., Benz, S.: Thermocapillary flow instabilities in an annulus under microgravity-results of the experiment. Adv. Space Res. 29(4), 629–638 (2002)

  • Yu, J.J., Li, Y.R., Wu, C.M., Chen, J.C.: Three-dimensional thermocapillary-buoyancy flow of a binary mixture with Soret effect in a shallow annular pool. Int. J. Heat Mass Transf. 90, 1071–1081 (2015a)

    Article  Google Scholar 

  • Yu, J.J., Ruan, D.F., Li, Y.R., Chen, J.C.: Experimental study on thermocapillary convection of binary mixture in a shallow annular pool with radial temperature gradient. Exp. Thermal Fluid Sci. 61, 79–86 (2015b)

    Article  Google Scholar 

  • Yu, J.J., Zhang, L., Li, Y.R., Chen, J.C.: Numerical simulations of thermocapillary flow of a binary mixture with the Soret effect in a shallow annular pool. Microgravity Sci. Technol. 28(1), 1–10 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for the support of the National Natural Science Foundation of China (Grant No. 51406019). We are also grateful to Dr. Aaron H. Persad from University of Toronto for his helpful grammatical edits.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Mei Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Luo, JQ., Wu, CM. et al. Thermocapillary Convection in a Binary Mixture with Moderate Prandtl Number in a Shallow Annular Pool. Microgravity Sci. Technol. 30, 33–42 (2018). https://doi.org/10.1007/s12217-017-9572-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-017-9572-7

Keywords

Navigation