Skip to main content
Log in

Martingale Musielak–Orlicz–Lorentz Hardy Spaces with Applications to Dyadic Fourier Analysis

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let \((\Omega ,{\mathcal {F}},{\mathbb {P}})\) be a probability space, \(\varphi :\ \Omega \times [0,\infty )\rightarrow [0,\infty )\) a Musielak–Orlicz function, and \(q\in (0,\infty ]\). In this article, the authors introduce five martingale Musielak–Orlicz–Lorentz Hardy spaces and prove that these new spaces have some important features such as atomic characterizations, the boundedness of \(\sigma \)-sublinear operators, and martingale inequalities. This new scale of martingale Hardy spaces requires the introduction of the Musielak–Orlicz–Lorentz space \(L^{\varphi ,q}(\Omega )\). In particular, the authors show that this Lorentz type space has some fundamental properties including the completeness, the convergence, real interpolations, and the Fefferman–Stein vector-valued inequality for the Doob maximal operator. As applications, the authors prove that the maximal Fejér operator is bounded from the martingale Musielak–Orlicz–Lorentz Hardy space \(H_{\varphi ,q}[0,1)\) to \(L^{\varphi ,q}[0,1)\), which further implies some convergence results of the Fejér means. Moreover, all the above results are new even for Musielak–Orlicz functions with particular structure such as weight, weight Orlicz, and double-phase growth. The main approach used in this article can be viewed as a combination of the stopping time argument in probability theory and the real-variable technique of function spaces in harmonic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Mingione, G.: Gradient estimates for a class of parabolic systems. Duke Math. J. 136, 285–320 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Aoki, T.: Locally bounded linear topological spaces. Proc. Imp. Acad. Tokyo 18, 588–594 (1942)

    MathSciNet  MATH  Google Scholar 

  3. Arai, R., Nakai, E., Sadasue, G.: Fractional integrals and their commutators on martingale Orlicz spaces. J. Math. Anal. Appl. 487(123991), 1–35 (2020)

    MathSciNet  MATH  Google Scholar 

  4. Bergh, J., Löfström, J.: Interpolation Spaces. An Introduction. Springer, New York (1976)

    MATH  Google Scholar 

  5. Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and \(H^1\). Ann. Inst. Fourier Grenoble 57, 1405–1439 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Bonami, A., Grellier, S., Ky, L.D.: Paraproducts and products of functions in \(BMO\,( {\mathbb{R}}^n)\) and \({\cal{H}}^1({\mathbb{R}}^n)\) through wavelets. J. Math. Pures Appl. 9 97, 230–241 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bonami, A., Cao, J., Ky, L., Liu, L., Yang, D., Yuan, W.: Multiplication between Hardy spaces and their dual spaces. J. Math. Pures Appl. 9 131, 130–170 (2019)

    MathSciNet  MATH  Google Scholar 

  8. Bui, T.A.: Regularity estimates for nondivergence parabolic equations on generalized Orlicz spaces. Int. Math. Res. Not. IMRN (2021). https://doi.org/10.1093/imrn/rnaa002

    Article  MathSciNet  Google Scholar 

  9. Burkholder, D.L., Gundy, R.F.: Extrapolation and interpolation of quasi-linear operators on martingales. Acta Math. 124, 249–304 (1970)

    MathSciNet  MATH  Google Scholar 

  10. Cruz-Uribe, D., Hästö, P.: Extrapolation and interpolation in genaralized Orlicz spaces. Trans. Am. Math. Soc. 370, 4323–4349 (2018)

    MATH  Google Scholar 

  11. Doléans-Dade, C., Meyer, P.-A.: Inégalités de normes avec poids. In: (French) Séminaire de Probabilités, XIII, (Univ. Strasbourg, Strasbourg, 1977/78), Lecture Notes in Mathematics 721, pp. 313–331. Springer, Berlin (1979)

  12. Fine, N.J.: On the Walsh functions. Trans. Am. Math. Soc. 65, 372–414 (1949)

    MathSciNet  MATH  Google Scholar 

  13. Gát, G., Goginava, U.: The weak type inequality for the maximal operator of the \((C,\alpha )\)-means of the Fourier series with respect to the Walsh-Kaczmarz system. Acta Math. Hungar. 125, 65–83 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Golubov, B., Efimov, A., Skvortsov, V.: Walsh Series and Transforms. Kluwer Academic Publishers, Dordrecht (1991)

    MATH  Google Scholar 

  15. Hao, Z., Li, L.: Orlicz-Lorentz Hardy martingale spaces. J. Math. Anal. Appl. 482(1), 123520, 1-27 (2020)

    MathSciNet  MATH  Google Scholar 

  16. Harjulehto, P., Hästö, P.: Orlicz Spaces and Generalized Orlicz Spaces. Lecture Notes in Mathematics, vol. 2236. Springer, Cham (2019)

    MATH  Google Scholar 

  17. Hästö, P., Ok, J.: Maximal regularity for local minimizers of non-autonomous functionals, J. Eur. Math. Soc. (JEMS) (to appear) or arXiv:1902.00261v2

  18. Herz, C.: \(H_p\)-spaces of martingales, \(0<p\le 1\), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28, 189–205 (1973/74)

  19. Herz, C.: Bounded mean oscillation and regulated martingales. Trans. Am. Math. Soc. 193, 199–215 (1974)

    MathSciNet  MATH  Google Scholar 

  20. Ho, K.-P.: Atomic decomposition, dual spaces and interpolations of martingale Lorentz-Karamata spaces. Q. J. Math. 65, 985–1009 (2014)

    MathSciNet  MATH  Google Scholar 

  21. Ho, K.-P.: Doob’s inequality, Burkholder-Gundy inequality and martingale transforms on martingale Morrey spaces. Acta Math. Sci. Ser. B Engl. Ed. 38, 93–109 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Jiao, Y., Xie, G., Zhou, D.: Dual spaces and John-Nirenberg inequalities of martingale Hardy-Lorentz-Karamata spaces. Q. J. Math. 66, 605–623 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Jiao, Y., Zhou, D., Hao, Z., Chen, W.: Martingale Hardy spaces with variable exponents. Banach J. Math. Anal. 10, 750–770 (2016)

    MathSciNet  MATH  Google Scholar 

  24. Jiao, Y., Wu, L., Yang, A., Yi, R.: The predual and John-Nirenberg inequalities on generalized BMO martingale spaces. Trans. Am. Math. Soc. 369, 537–553 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Jiao, Y., Weisz, F., Wu, L., Zhou, D.: Variable martingale Hardy spaces and their applications in Fourier analysis. Dissertationes Math. 550, 1–67 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Kempka, H., Vybíral, J.: Lorentz spaces with variable exponents. Math. Nachr. 287, 938–954 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Liang, Y., Yang, D., Jiang, R.: Weak Musielak-Orlicz Hardy spaces and applications. Math. Nachr. 289, 634–677 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Lindemulder, N., Veraar, M., Yaroslavtsev, I.: The UMD Property for Musielak-Orlicz Spaces, Positivity and Noncommutative Analysis. Trends Math, pp. 349–363. Springer, Cham (2019)

    MATH  Google Scholar 

  29. Long, R.: Martingale Spaces and Inequalities. Peking University Press, Beijing (1993)

    MATH  Google Scholar 

  30. Miyamoto, T., Nakai, E., Sadasue, G.: Martingale Orlicz-Hardy spaces. Math. Nachr. 285, 670–686 (2012)

    MathSciNet  MATH  Google Scholar 

  31. Móricz, F., Schipp, F., Wade, W.R.: Cesáro summability of double Walsh-Fourier series. Trans. Am. Math. Soc. 329, 131–140 (1992)

    MATH  Google Scholar 

  32. Nakai, E., Sadasue, G.: Pointwise multipliers on martingale Campanato spaces. Studia Math. 220, 87–100 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Nakai, E., Sadasue, G.: Some new properties concerning BLO martingales. Tohoku Math. J. 2 69, 183–194 (2017)

    MathSciNet  MATH  Google Scholar 

  34. Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Nakai, E., Sadasue, G., Sawano, Y.: Martingale Morrey–Hardy and Campanato–Hardy spaces, J. Funct. Spaces Appl., Art. ID 690258, p. 14 (2013)

  36. Sadasue, G.: Martingale Besov spaces and Martingale Triebel-Lizorkin spaces. Sci. Math. Jpn. 82, 57–82 (2019)

    MathSciNet  MATH  Google Scholar 

  37. Sagher, Y.: Interpolation of \(r\)-Banach spaces. Studia Math. 41, 45–70 (1972)

    MathSciNet  MATH  Google Scholar 

  38. Sawano, Y., Ho, K.-P., Yang, D., Yang, S.: Hardy spaces for ball quasi-Banach function spaces. Dissertationes Math. 525, 1–102 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Schipp, F., Wade, W.R., Simon, P., Pál, J.: Walsh Series. An Introduction to Dyadic Harmonic Analysis. Adam Hilger, Bristol (1990)

    MATH  Google Scholar 

  40. Simon, P.: Cesàro summability with respect to two-parameter Walsh systems. Monatsh. Math. 131, 321–334 (2000)

    MathSciNet  MATH  Google Scholar 

  41. Simon, P., Weisz, F.: Weak inequalities for Cesàro and Riesz summability of Walsh-Fourier series. J. Approx. Theory 151, 1–19 (2008)

    MathSciNet  MATH  Google Scholar 

  42. Szarvas, K., Weisz, F.: Mixed martingale Hardy spaces. J. Geom. Anal. 31, 3863–3888 (2021)

    MathSciNet  MATH  Google Scholar 

  43. Weisz, F.: Martingale Hardy spaces for \(0<p\le 1\). Probab. Theory Relat. Fields 84, 361–376 (1990)

    MATH  Google Scholar 

  44. Weisz, F.: Martingale Hardy Spaces and Their Applications in Fourier Analysis. Lecture Notes in Mathematics, vol. 1568. Springer, Berlin (1994)

    MATH  Google Scholar 

  45. Weisz, F.: Cesàro summability of one- and two-dimensional Walsh-Fourier series. Anal. Math. 22, 229–242 (1996)

    MathSciNet  MATH  Google Scholar 

  46. Weisz, F.: The maximal \((C,\alpha,\beta )\) operator of two-parameter Walsh-Fourier series. J. Fourier Anal. Appl. 6, 389–401 (2000)

    MathSciNet  MATH  Google Scholar 

  47. Weisz, F.: Summability of Multi-dimensional Fourier Series and Hardy Spaces, Mathematics and its Applications 541. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  48. Xie, G., Yang, D.: Atomic characterizations of weak martingale Musielak-Orlicz Hardy spaces and their applications. Banach J. Math. Anal. 13, 884–917 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Xie, G., Jiao, Y., Yang, D.: Martingale Musielak-Orlicz Hardy spaces. Sci. China Math. 62, 1567–1584 (2019)

    MathSciNet  MATH  Google Scholar 

  50. Xie, G., Weisz, F., Yang, D., Jiao, Y.: New martingale inequalities and applications to Fourier analysis. Nonlinear Anal. 182, 143–192 (2019)

    MathSciNet  MATH  Google Scholar 

  51. Yang, D., Liang, Y., Ky, L.D.: Real-variable Theory of Musielak-Orlicz Hardy Spaces. Lecture Notes in Mathematics, vol. 2182. Springer, Cham (2017)

    MATH  Google Scholar 

  52. Yang, D., Yuan, W., Zhang, Y.: Bilinear decomposition and divergence-curl estimates on products related to local Hardy spaces and their dual spaces. J. Funct. Anal. 280(2), 108796, 74 (2021)

    MathSciNet  MATH  Google Scholar 

  53. Zhang, Y., Yang, D., Yuan, W.: Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions. Commun. Contemp. Math. (2021). https://doi.org/10.1142/S0219199721500048

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank both referees for their carefully reading and several motivating and useful comments which indeed improve the quality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangheng Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project is supported by the National Natural Science Foundation of China (Grant Nos. 11722114, 11971058 and 12071197), the Hungarian Scientific Research Funds (OTKA) (Grant No. KH130426), China Postdoctoral Science Foundation (Grant No. 2019M662797), and the National Key Research and Development Program of China (Grant No. 2020YFA0712900)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Y., Weisz, F., Xie, G. et al. Martingale Musielak–Orlicz–Lorentz Hardy Spaces with Applications to Dyadic Fourier Analysis. J Geom Anal 31, 11002–11050 (2021). https://doi.org/10.1007/s12220-021-00671-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-021-00671-8

Keywords

Mathematics Subject Classification

Navigation