Skip to main content
Log in

Preparation and characterization of nylon-6/gelatin composite nanofibers via electrospinning for biomedical applications

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Easy fabrication, porosity, good mechanical properties, and composition controllable of the electrospun nanofiber mat make this material a promising candidate for wound dressing applications. In the present study, nylon6/gelatin electrospun nanofiber mats are introduced as novel wound dressing materials. The introduced mats were synthesized by electrospinning of nylon6 and gelatin mixtures, three mats containing different gelatin content were prepared; 10, 20 and 30 wt%. Interestingly, addition of the gelatin did not affect the mechanical properties of the nylon 6, moreover the mat containing 10 wt% gelatin revealed higher mechanical properties due to formation of spider-net like structure from very thin nanofibers (∼10 nm diameter) bonding the main nanofibers. Biologically study indicates that gelatin incorporation strongly enhances the bioactivity performance as increasing the gelatin content linearly increases the MC3T3-E1 cell attachment. Overall, the obtained results recommend exploiting the introduced mats as wound dressing material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Khil, D. Cha, H. Y. Kim, I. S. Kim, and N. Bhattarai, J. Biomed. Mater. Res., 67B, 675 (2003).

    Article  CAS  Google Scholar 

  2. J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, and L. Yang, J. Control Release, 92, 227 (2003).

    Article  CAS  Google Scholar 

  3. C. Xu, R. Inai, M. Kotaki, and S. Ramakrishna, Tissue Eng., 10, 1160 (2004).

    CAS  Google Scholar 

  4. C. T. Laurencin, A. M. A. Ambrosio, M. D. Borden, and J. A. Jr. Cooper, Annu. Rev. Biomed. Eng., 1, 19 (1999).

    Article  CAS  Google Scholar 

  5. Y.-A. Seo, H. R. Pant, R. Nirmala, J.-H. Lee, K. G. Song, and H. Y. Kim, J. Porous Mater., 19, 217 (2011).

    Article  Google Scholar 

  6. S. Ramakrishna, K. Fujihara, W. E. Teo, T. Yong, Z. Ma, and R. Ramaseshan, Mater. Today, 9, 40 (2006).

    Article  CAS  Google Scholar 

  7. R. Nirmala, J. W. Jeong, H. J. Oh, R. Navamathavan, M. El-Newehy, S. S. Al-Deyab, and H. Y. Kim, Fiber. Polym., 12, 1021 (2011).

    Article  CAS  Google Scholar 

  8. G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, and S. Ryu, J. Biomed. Mater. Res. A, 82, 445 (2007).

    Google Scholar 

  9. X. L. Deng, G. Sui, M. L. Zhao, G. Q. Chen, and X. P. Yang, J. Biomater. Sci. Polym., 18, 117 (2007).

    Article  CAS  Google Scholar 

  10. S. A. Catledge, W. C. Clem, N. Shrikishen, S. Chowdhury, A. V. Stanishevsky, M. Koopman, and Y. K. Vohra, Biomed. Mater., 2, 142 (2007).

    Article  CAS  Google Scholar 

  11. G. Ciardelli, V. Chiono, G. Vozzi, M. Pracella, A. Ahluwalia, and N. Barbani, Biomacromolecules, 6, 1967 (2005).

    Article  Google Scholar 

  12. H. S. Koh, T. Yong, C. K. Chan, and S. Ramakrishna, Biomaterials, 29, 3574 (2008).

    Article  CAS  Google Scholar 

  13. M. Cheng, J. Deng, F. Yang, Y. Gong, N. Zhao, and X. Zhang, Biomaterials, 24, 2871 (2003).

    Article  CAS  Google Scholar 

  14. J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 37, 877 (2004).

    Article  CAS  Google Scholar 

  15. E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, and S. Ramakrishna, Acta Biomaterialia, 3, 321 (2007).

    Article  CAS  Google Scholar 

  16. L. G. Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahanid, and S. Ramakrishna, Biomaterials, 29, 4532 (2008).

    Article  Google Scholar 

  17. Z. X. Meng, Y. S. Wang, C. Ma, W. Zheng, L. Li, and Y. F. Zheng, Mat. Sci. Eng. C, 30, 1204 (2010).

    Article  CAS  Google Scholar 

  18. J. Lee, G. Tae, Y. H. Kim, I. S. Park, and S. H. Kim, Biomaterials, 29, 1872 (2008).

    Article  CAS  Google Scholar 

  19. Z. M. Huanga, Y. Z. Zhang, S. Ramakrishna, and C. T. Lim, Polymer, 45, 5361 (2004).

    Article  Google Scholar 

  20. R. Nirmala, K. T. Nam, S. J. Park, Y. S. Shin, R. Navamathavan, and H. Y. Kim, Appl. Surf. Sci., 256, 6318 (2010).

    Article  CAS  Google Scholar 

  21. Y. Ma, T. Zhou, and C. Zhao, Carbohyd. Res., 343, 230 (2008).

    Article  CAS  Google Scholar 

  22. V. Gonzalez, C. Guerrero, and U. Ortiz, J. Appl. Polym. Sci., 78, 850 (2000).

    Article  CAS  Google Scholar 

  23. M. A. Kanjwal, N. A. M. Barakat, F. A. Sheikh, M. S. Khil, and H. Y. Kim, Fiber. Polym., 11, 700 (2010).

    Article  CAS  Google Scholar 

  24. F. A. Sheikh, N. A. M. Barakat, M. A. Kanjwal, S. J. Park, H. Kim, and H. Y. Kim, Fiber. Polym., 11, 384 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hak Yong Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panthi, G., Barakat, N.A.M., Risal, P. et al. Preparation and characterization of nylon-6/gelatin composite nanofibers via electrospinning for biomedical applications. Fibers Polym 14, 718–723 (2013). https://doi.org/10.1007/s12221-013-0718-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-0718-y

Keywords

Navigation