Skip to main content
Log in

Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the effective parameters for prediction of the electrospun gelatin nanofibers diameter using artificial neural network (ANN) technique. The various sets of electrospinning process including temperature, applied voltage and polymer and solvent concentrations were designed to produce pure gelatin nanofibers. The obtained results by analyzing Scanning Electron Microscopy (SEM) images indicated that the produced nanofibers diameter was in the range of 85 to 750 nm. Due to the volume of the data, k fold cross-validation method was used for data setting. Data were divided into the five categories and trained and tested using ANN technique. The results indicated that the network including 4 input variables, 3 hidden layers with 10, 18 and 9 nodes in each layers, respectively, and one output layer had the best performance in the testing sets. The mean squared error (MSE) and linear regression (R) between observed and predicted nanofibers diameter were 0.1531 and 0.9424, respectively. The obtained results demonstrated that the selected neural network model had acceptable performance for evaluating involved parameters and prediction of nanofibers diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue. Eng., 12, 1197 (2006).

    Article  CAS  Google Scholar 

  2. M. I. Lerner, S. G. Psakhie, V. G. Pugachev, V. E. Repin, G. E. Rudenskiy, and N. V. Svarovskaya, U. S. Patent, 8033400 B2 (2011).

  3. X. J. Loh, P. Peh, S. Liao, C. Sng, and J. Li, J. Control. Release, 143, 175 (2010).

    Article  CAS  Google Scholar 

  4. S. Hong and G. Kim, Carbohyd. Polym., 83, 940 (2011).

    Article  CAS  Google Scholar 

  5. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, Polymer, 48, 6913 (2007).

    Article  CAS  Google Scholar 

  6. R. Faridi-Majidi, H. Ziyadi, N. Naderi, and A. Amani, J. Appl. Polym. Sci., 124, 1589 (2012).

    Article  CAS  Google Scholar 

  7. P. Gibson, H. Schreuder-Gibson, and D. Rivin, Colloid. Surface. A, 187, 469 (2001).

    Article  Google Scholar 

  8. P. Mazzatorta, E. Benfenati, C. D. Neagu, and G. Gini, J. Chem. Inf. Comp. Sci., 42, 1250 (2002).

    CAS  Google Scholar 

  9. A. Feelders, H. Daniels, and M. Holsheimer, Inform. Manag., 37, 271 (2000).

    Article  Google Scholar 

  10. J. Sun and H. Li, Knowl-Based Syst., 21, 1 (2008).

    Article  Google Scholar 

  11. N. Naderi, F. Agend, R. Faridi-Majidi, N. Sharifi-Sanjani, and M. Madani, J. Nanosci. Nanotechno., 8, 2509 (2008).

    Article  CAS  Google Scholar 

  12. O. Yördem, M. Papila, and Y. Z. Mencelo lu, Design, 29, 34 (2008).

    Article  Google Scholar 

  13. D. Ba and. H. Boyac, J. Food Eng., 78, 836 (2007).

    Article  Google Scholar 

  14. W. Lou and S. Nakai, Food. Res. Int., 34, 573 (2001).

    Article  Google Scholar 

  15. K. Sarkar, M. B. Ghalia, Z. Wu, and S. C. Bose, J. Mater. Process. Tech., 209, 3156 (2009).

    Article  CAS  Google Scholar 

  16. E. Mirzaei, A. Amani, S. Sarkar, R. Saber, D. Mohammadyani, R. Faridi-Majidi, J. Appl. Polym. Sci., 125, 1910 (2012).

    Article  CAS  Google Scholar 

  17. M. Li, X. Huang, H. Liu, B. Liu, Y. Wu, and X. Deng, J. Appl. Polym. Sci., 129, 3297 (2013).

    Article  CAS  Google Scholar 

  18. E. Esmaeilzadeh-Gharedaghi, M. A. Faramarzi, M. A. Amini, A. Rouholamini-Najafabadi, S. M. Rezayat, and A. Amani, Pharm. Dev. Technol., 17, 638 (2012).

    Article  CAS  Google Scholar 

  19. N. Kathuria, A. Tripathi, K. K. Kar, and A. Kumar, Acta Biomater., 5, 406 (2009).

    Article  CAS  Google Scholar 

  20. H. Fong, I. Chun, and D. Reneker, Polymer, 40, 4585 (1999).

    Article  CAS  Google Scholar 

  21. D. Li, T. Herricks, and Y. Xia, Appl. Phys. Lett., 83, 4586 (2003).

    Article  CAS  Google Scholar 

  22. R. Kohavi, International Joint Conference on Artificial Intelligence, Lawrence Erlbaum Associates Ltd, 14, 1137–1145 (1995).

    Google Scholar 

  23. J. H. He, Y. Q. Wan, and L. Xu, Chaos, Solitons & Fractals, 33, 26 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Adabi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghibzadeh, M., Adabi, M. Evaluation of effective electrospinning parameters controlling gelatin nanofibers diameter via modelling artificial neural networks. Fibers Polym 15, 767–777 (2014). https://doi.org/10.1007/s12221-014-0767-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0767-x

Keywords

Navigation