Skip to main content
Log in

Preparation and properties of nanodiamond/poly(lactic acid) composite nanofiber scaffolds

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nanodiamonds (NDs) were employed for the first time to enhance the mechanical properties of poly(lactic acid) (PLA)-based nanofiber scaffolds. Uniform ND/PLA composite nanofibers can be electrospun at <1 wt% loading of NDs. The introduction of NDs improved the thermal stability of PLA-based nanofibers. Fourier transform infrared spectroscopy results demonstrated good adhesion between ND nanofillers and PLA matrix. Following the addition of NDs, the four mechanical indicators, tensile strength, Young’s modulus, elongation at break and fracture toughness of ND/PLA composite nanofiber membranes increased accompanied by the later decrease with the rise of ND content. The four indicators achieved their respective maximum value at 1 wt% ND content, which revealed 2.4 fold increase of tensile strength, 1.6 fold augment of Young’s modulus, 1.4 fold elevation of elongation at break, and 4.8 fold growth of fracture toughness, respectively. Compared with the tensile strength and Young’s modulus of neat PLA, ND nanofillers exhibited the best reinforcing ability for PLA-based composite nanofibers, which was attributed to the effective interfacial adhesion between PLA and rigid ND particles and the good dispersion of NDs in PLA matrix. The ND/PLA composite nanofiber membranes with improved mechanical properties possess potential application in biomedical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Robert and J. P. Vacanti, Science, 260, 920 (1993).

    Article  Google Scholar 

  2. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  3. L. A. Smith, X. Liu, and P. X. Ma, Soft Matter, 4, 2144 (2008).

    Article  CAS  Google Scholar 

  4. Y. Tokiwa and B. P. Calabia, Appl. Microbiol. Biot., 72, 244 (2006).

    Article  CAS  Google Scholar 

  5. C. N. Manning, A. G. Schwartz, W. Liu, J. Xie, N. Havlioglu, S. E. Sakiyama-Elbert, M. J. Silva, Y. Xia, R. H. Gelberman, and S. Thomopoulos, Acta. Biomater., 9, 6905 (2013).

    Article  CAS  Google Scholar 

  6. K. D. Zio and D. A. Tirrell, Macromolecules, 36, 1553 (2003).

    Article  Google Scholar 

  7. X. Duan and H. Sheardown, Biomaterials, 27, 4608 (2006).

    Article  CAS  Google Scholar 

  8. Q. F. Shi, H. Y. Mou, L. Gao, J. Yang, and W. H. Guo, J. Polym. Environ., 18, 567 (2010).

    Article  CAS  Google Scholar 

  9. J. M. Holzwarth and P. X. Ma, Biomaterials, 32, 9622 (2011).

    Article  CAS  Google Scholar 

  10. L. Huang, S. S. Manickam, and J. R. McCutcheon, J. Membr. Sci., 436, 213 (2013).

    Article  CAS  Google Scholar 

  11. G. G. Tibbetts, M. L. Lake, K. L. Strong, and B. P. Rice, Compos. Sci. Technol., 67, 1709 (2007).

    Article  CAS  Google Scholar 

  12. K. Yoon, B. S. Hsiao, and B. Chu, Polymer, 50, 2893 (2009).

    Article  CAS  Google Scholar 

  13. T. Ozkan, M. Naraghi, and I. Chasiotis, Carbon, 48, 239 (2010).

    Article  CAS  Google Scholar 

  14. J. D. Schiffman and C. L. Schauer, Biomacromolecules, 8, 594 (2006).

    Article  Google Scholar 

  15. J. Xu, N. Cai, W. Xu, Y. Xue, Z. Wang, Q. Dai, and F. Yu, Nanotechnology, 24, (2013).

    Google Scholar 

  16. J. N. Coleman, U. Khan, W. J. Blau, and Y. K. Gun’ko, Carbon, 44, 1624 (2006).

    Article  CAS  Google Scholar 

  17. H. Huang, E. Pierstorff, E. Osawa, and D. Ho, ACS Nano, 2, 203 (2008).

    Article  CAS  Google Scholar 

  18. V. N. Mochalin, O. Shenderova, D. Ho, and Y. Gogotsi, Nat. Nanotechnol., 7, 11 (2012).

    Article  CAS  Google Scholar 

  19. Q. Zhang, V. N. Mochalin, I. Neitzel, K. Hazeli, J. Niu, A. Kontsos, J. G. Zhou, P. I. Lelkes, and Y. Gogotsi, Biomaterials, 33, 5067 (2012).

    Article  CAS  Google Scholar 

  20. I. Neitzel, V. Mochalin, I. Knoke, G. R. Palmese, and Y. Gogotsi, Compos. Sci. Technol., 71, 710 (2011).

    Article  CAS  Google Scholar 

  21. P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer, 46, 4799 (2005).

    Article  CAS  Google Scholar 

  22. C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, Polymer, 48, 6913 (2007).

    Article  CAS  Google Scholar 

  23. J. S. Choi, S. W. Lee, L. Jeong, S. H. Bae, B. C. Min, J. H. Youk, and W. H. Park, Int. J. Biol. Macromol., 34, 249 (2004).

    Article  CAS  Google Scholar 

  24. Q. Shi, C. Zhou, Y. Yue, W. Guo, Y. Wu, and Q. Wu, Carbohyd. Polym., 90, 301 (2012).

    Article  CAS  Google Scholar 

  25. S. Mazinani, A. Ajji, and C. Dubois, Polymer, 50, 3329 (2009).

    Article  CAS  Google Scholar 

  26. Y. Chen, J. Lin, Y. Wan, Y. Fei, H. Wang, and W. Gao, Fiber. Polym., 13, 1254 (2012).

    Article  CAS  Google Scholar 

  27. A. M. Panich, A. I. Shames, B. Zousman, and O. Levinson, Diam. Relat. Mater., 23, 150 (2012).

    Article  CAS  Google Scholar 

  28. S. Wang, C. Wang, B. Zhang, Z. Sun, Z. Li, X. Jiang, and X. Bai, Mater. Lett., 64, 9 (2010).

    Article  CAS  Google Scholar 

  29. A. L. Patterson, Phys. Rev., 56, 978 (1939).

    Article  CAS  Google Scholar 

  30. X. F. Ma, J. G. Yu, and N. Wang, J. Polym. Sci. Polym. Phys., 44, 94 (2006).

    Article  CAS  Google Scholar 

  31. A. Pawlak and M. Mucha, Thermochim. Acta, 396, 153 (2003).

    Article  CAS  Google Scholar 

  32. R. Auras, B. Harte, and S. Selke, Macromol. Biosci., 4, 835 (2004).

    Article  CAS  Google Scholar 

  33. N. Wang, X. Zhang, X. Ma, and J. Fang, Polym. Degrad. Stabil., 93, 1044 (2008).

    Article  CAS  Google Scholar 

  34. R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, J. Macromol. Sci.-Pol. R., C45, 325 (2005).

    Article  Google Scholar 

  35. M. Liu, Y. Zhang, and C. Zhou, Appl. Clay. Sci., 75–76, 52 (2013).

    Article  Google Scholar 

  36. E. Çelikkaya, E. B. Denkbas, and E. Piskin, J. Appl. Polym. Sci., 61, 1439 (1996).

    Article  Google Scholar 

  37. M. D. Frogley, D. Ravich, and H. D. Wagner, Compos. Sci. Technol., 63, 1647 (2003).

    Article  CAS  Google Scholar 

  38. M. Murariu, A. Doumbia, L. Bonnaud, A.-L. Dechief, Y. Paint, M. Ferreira, C. Campagne, E. Devaux, and P. Dubois, Biomacromolecules, 12, 1762 (2011).

    Article  CAS  Google Scholar 

  39. A. P. Mathew, K. Oksman, and M. Sain, J. Appl. Polym. Sci., 97, 2014 (2005).

    Article  CAS  Google Scholar 

  40. L. Suryanegara, A. N. Nakagaito, and H. Yano, Compos. Sci. Technol., 69, 1187 (2009).

    Article  CAS  Google Scholar 

  41. L. Liu, Y. Ren, Y. Li, and Y. Liang, Polymer, 54, 5250 (2013).

    Article  CAS  Google Scholar 

  42. Z. Wang, N. Cai, D. Zhao, J. Xu, Q. Dai, Y. Xue, X. Luo, Y. Yang, and F. Yu, Polym. Compos., 34, 1735 (2013).

    Google Scholar 

  43. S. D. McCullen, Y. Zhu, S. H. Bernacki, R. J. Narayan, B. Pourdeyhimi, R. E. Gorga, and E. G. Loboa, Biomed. Mater., 4, 035002 (2009).

    Article  CAS  Google Scholar 

  44. W. A. Ribeiro Neto, I. H. L. Pereira, E. Ayres, A. C. C. de Paula, L. Averous, A. M. Goes, R. L. Orefice, and R. E. Suman Bretas, Polym. Degrad. Stabil., 97, 2037 (2012).

    Article  CAS  Google Scholar 

  45. P. Kurtycz, T. Ciach, A. Olszyna, A. Kunicki, E. Radziun, M. Roslon, J. Dudkiewicz-Wilczynska, K. Nowak, and E. Anuszewska, Fiber. Polym., 14, 578 (2013).

    Article  CAS  Google Scholar 

  46. P. Kurtycz, E. Karwowska, T. Ciach, A. Olszyna, and A. Kunicki, Fiber. Polym., 14, 1248 (2013).

    Article  CAS  Google Scholar 

  47. X. Ji, T. Wang, L. Guo, J. Xiao, Z. Li, L. Zhang, Y. Deng, and N. He, J. Biomed. Nano. Technol., 9, 417 (2013).

    Article  CAS  Google Scholar 

  48. L. Q. Liu, A. H. Barber, S. Nuriel, and H. D. Wagner, Adv. Funct. Mater., 15, 975 (2005).

    Article  CAS  Google Scholar 

  49. L.-L. Kang, Y.-X. Huang, W.-J. Liu, X.-J. Zheng, Z.-J. Wu, and M. Luo, Biopolymers, 89, 951 (2008).

    Article  CAS  Google Scholar 

  50. M. R. Ayatollahi, E. Alishahi, S. Doagou-R, and S. Shadlou, Compos. Part B-Eng., 43, 3425 (2012).

    Article  CAS  Google Scholar 

  51. S. Yan, J. Yin, J. Yang, and X. Chen, Mater. Lett., 61, 2683 (2007).

    Article  CAS  Google Scholar 

  52. Z. Hashin and S. Shtrikman, J. Mech. Phys. Solids., 11, 127 (1963).

    Article  Google Scholar 

  53. I. Pillin, N. Montrelay, A. Bourmaud, and Y. Grohens, Polym. Degrad. Stabil., 93, 321 (2008).

    Article  CAS  Google Scholar 

  54. C. A. Klein and G. F. Cardinale, Diamond Relat. Mater., 2, 918 (1993).

    Article  CAS  Google Scholar 

  55. S. Morimune, M. Kotera, T. Nishino, K. Goto, and K. Hata, Macromolecules, 44, 4415 (2011).

    Article  CAS  Google Scholar 

  56. M. Narkis and L. Nicolais, J. Appl. Polym. Sci., 15, 469 (1971).

    Article  CAS  Google Scholar 

  57. X.-Y. Wang, J.-F. Su, S.-B. Wang, and Y.-H. Zhao, Polym. Compos., 32, 1439 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faquan Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, N., Dai, Q., Wang, Z. et al. Preparation and properties of nanodiamond/poly(lactic acid) composite nanofiber scaffolds. Fibers Polym 15, 2544–2552 (2014). https://doi.org/10.1007/s12221-014-2544-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2544-2

Keywords

Navigation