Skip to main content
Log in

Zeolite Integrated Nanocellulose Films for Removal of Loose Anionic Reactive Dye by Adsorption vs. Filtration Mode during Textile Laundering

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Water stable, flexible and ecological acceptance composite films were prepared by the solvent casting process using native, dealuminated (treated with HCl to affect the surface chemistry and pore structure) and/or surface modified (coated with a cationic surfactant PDADM of different molecular weights) H-ZSM-5 type zeolite of different shapes (spherical vs. rod) and Si/Al ratios (P26 vs. P371) as adsorbents and cellulose nanofibrils (CNFs) as a networking matrix (in a weight ratio of 4:1). The films were tested for removal of the black anionic reactive dye with the highest bleeding effect at the first rinsing cycle of textile laundering. The effects of zeolite structure and surface chemistry on films dye’ removal kinetics from a standardised rinsing bath were investigated for up to 140 min at room temperature and using 0.1 g/l of dye concentration, depending on the film-to-bath weight-to-volume ratios (from 1:10 to 1:1000), thus simulating different rinsing conditions. The results show that up to 80 % of the dye was removed in the first 20 min in the lowest weight-to-volume ratio (1:10), fitting the Langmuir isotherm, and the process followed the pseudo-second order kinetic, yielding a multi-layer adsorption mechanism with a monolayer capacity of ~11 mg/g and ~21 vs. ~30 mg/g by films prepared from native or HCltreated and PDADMA100 vs. PDADMA400 coated P371 zeolites, respectively. Such efficacy was due to the more densely and fully surface-covered longitudinal P371 with PDADM400, given the huge electrostatic attraction sites for dye molecules, compared to the partly interpenetrated PDADM into relatively larger pore-sized (~450 nm vs. 220 nm) of P26. The filtration performance of the films was also examined, be used for the removal of the dye from the rinsing bath, released from the washing drum. An ultra-high flux rate (11.000 kL/m2 h MPa) with 45 % of dye removal efficacy and capacity of ~24 mg/g was provided by films prepared from spherical and aggregated P26PDADMA-400, showing its high potential also as a filter membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Laitala, C. Boks, and I. Grimstad Klepp, Inter. J. Consum. Stud., 35, 254 (2011).

    Article  Google Scholar 

  2. J. Was-Gubala, Science & Justice, 49, 165 (2009).

    Article  Google Scholar 

  3. J. Was-Gubala and E. Grzesiak, Science & Justice, 50, 55 (2010).

    Article  CAS  Google Scholar 

  4. T. Uchiyama, A. Kawauchi, and D. L. DuVal, J. Anal. Appl. Pyrolysis, 45, 111 (1998).

    Article  CAS  Google Scholar 

  5. Y. Yangxin, J. Zhao, and A. E. Bayly, Chinese. J. Chem. Eng., 16, 517 (2008).

    Article  Google Scholar 

  6. V. V. Antić, M. P. Antić, A. Kronimus, K. Oing, and J. Schwarzbauer, J. Anal. Appl. Pyrolysis, 90, 93 (2011).

    Article  CAS  Google Scholar 

  7. B. Neral, S. Arnuš, D. Štanc, T. Vodovnik, P. Lesjak, and I. Doler, “Optimization of Washing Parameters BOM-TIME-40–4,5KG: Research Report”, Maribor: University of Maribor, Faculty of Mechanical Engineering, 2014.

    Google Scholar 

  8. M. Krajnc and B. Dolsak, Int. J. Simul. Model., 12, 39 (2013).

    Article  Google Scholar 

  9. P. Velmurugan, V. Rathina Kumar, and G. Dhinakaran, Inter. J. Environ. Sci., 1, 1492 (2011).

    CAS  Google Scholar 

  10. E. I. Unuabonah and A. Taubert, Appl. Clay Sci., 99, 83 (2014).

    Article  CAS  Google Scholar 

  11. M. T. Yagub, T. K. Sen, S. Afroze, and H. M. Ang, Adv. Colloid Interface Sci., 209, 172 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. S. Jin, Y. Chen, and M. Liu, Adv. Mater. Res., 662, 198 (2013).

    Article  CAS  Google Scholar 

  13. A. W. Carpenter, C. F. de Lannoy, and M. R. Wiesner, Environ. Sci. Technol., 49, 5277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. C. J. Zhou, Q. L. Wu, and T. Z. Lei, Chem. Eng. J., 251, 17 (2014).

    Article  CAS  Google Scholar 

  15. S. Wang and Y. Peng, Chem. Eng. J., 156, 11 (2010).

    Article  CAS  Google Scholar 

  16. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, E. Kikuchi, and M. Matsukata, Chem. Lett., 29, 882 (2000).

    Article  Google Scholar 

  17. J. C. Groen, L. A. A. Peffer, J. A. Moulijn, and J. Pérez-Ramírez, Micro. Meso. Mater., 69, 29 (2004).

    Article  CAS  Google Scholar 

  18. J. C. Groen, J. A. Moulijn, and J. Pérez-Ramírez, Mater. Chem., 16, 2121 (2006).

    Article  CAS  Google Scholar 

  19. J. C. Groen, S. Brouwer, L. A. A. Peffer, and J. Pérez-Ramírez, Part. Part. Syst. Charact., 23, 101 (2006).

    Article  CAS  Google Scholar 

  20. J. S. Jung, J. W. Park, and G. Seo, Appl. Catal. A, 288, 149 (2005).

    Article  CAS  Google Scholar 

  21. L. Su, L. Liu, J. Zhuang, H. Wang, Y. Li, W. Shen, Y. Xu, and X. Bao, Catal. Lett., 91, 155 (2003).

    Article  CAS  Google Scholar 

  22. K. Margeta, N. Zabukovec Logar, M. Šiljeg, and A. Farkaš, “Natural Zeolites in Water Treatment-How Effective is Their Use” (W. Elshorbagy and R. K. Chowdhury Eds.), Chap.5, Water Treatment, Publisher: in Tech, 2013.

  23. E. Alver and A. U. Metin, Chem. Eng. J., 200–202, 59 (2012).

    Article  CAS  Google Scholar 

  24. Y. Dong, D. Wu, X. Chen, and Y. Lin, J. Colloid Interface Sci., 348, 585 (2010).

    Article  CAS  PubMed  Google Scholar 

  25. C. Li, Y. Dong, D. Wu, L. Peng, and H. Kong, Appl. Clay Sci., 52, 353 (2011).

    Article  CAS  Google Scholar 

  26. S. Wang and Z. H. Zhu, J. Hazard. Mater. B, 136, 946 (2006).

    Article  CAS  Google Scholar 

  27. I. Humelnicu, A. Baicearnu, M. E. Ignat, and V. Dulman, Proc. Saf. Env. Protec., 105, 274 (2017).

    Article  CAS  Google Scholar 

  28. S. Wang, H. Li, S. Xie, S. Liu, and L. Xu, Chemosphere, 65, 82 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. F. Kooli, L. Yan, R. Al-Faze, and A. Al-Sehimi, Arabian J. Chem., 8, 333 (2015).

    Article  CAS  Google Scholar 

  30. Z. Bouberka, A. Khenifi, F. Sekrane, N. Bettahar, and Z. Derriche, Chem. Eng. J., 136, 295 (2008).

    Article  CAS  Google Scholar 

  31. M. Akgül, J. Hazard. Mater., 267, 1 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. F. Kooli, Y. Liu, R. Al-Faze, and A. Al Suhaimi, Appl. Clay Sci., 116–117, 23 (2015).

    Article  CAS  Google Scholar 

  33. S. Zaremotlagh and A. Hezarkhani, Env. Earth Sci., 71, 2999 (2014).

    Article  CAS  Google Scholar 

  34. C. K. Lim, H. H. Bay, C. H. Neoh, A. Aris, Z. Abdul Majid, and Z. Ibrahim, Environ. Sci. Pollut. Res. Int., 20, 7243 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Y. S. Ho and C. C. Chiang, Adsorption, 7, 139 (2001).

    Article  CAS  Google Scholar 

  36. F. Ji, C. Li, B. Tang, J. Xu, G. Lu, and P. Liu, Chem. Eng. J., 209, 325 (2012).

    Article  CAS  Google Scholar 

  37. Y. Zhang, T. Nypelö, C. Salas, J. Arboleda, I. C. Hoeger, and O. J. Rojas, J. Renew. Mater., 1, 195 (2013).

    Article  CAS  Google Scholar 

  38. M. Henriksson, L. A. Berglund, P. Isaksson, T. Lindström, and T. Nishino, Biomacromolecules, 9, 1579 (2008).

    Article  CAS  PubMed  Google Scholar 

  39. ASTM D5758-01:2011, “Standard Test Method for Determination of Relative Crystallinity of Zeolite ZSM-5 by X-ray Diffraction”, West Conshohocken, PA, United States, 1–4.

    Google Scholar 

  40. C. A. P. Nicolaides, Appl. Catal. A, 185, 211 (1999).

    Article  CAS  Google Scholar 

  41. S. Özvatan and Y. Yürüm, Energy Sources, 23, 475 (2001).

    Article  Google Scholar 

  42. SIST EN 60456:2010, “Clothes Washing Machines for Household Use-Methods for Measuring the Performance”, International Standard, 1–141.

  43. T. Armaroli, L. J. Simon, M. Digne, T. Montanari, M. Bevilacqua, V. Valtchev, J. Patarin, and G. Busca, Appl. Catal. A, 306, 78 (2016).

    Article  CAS  Google Scholar 

  44. S. S. Pollack, J. W. Adkins, E. L. Wetzel, and D. Newbury, Zeolites, 4, 181 (1984).

    Article  CAS  Google Scholar 

  45. S. Figaro, J. P. Avril, F. Brouers, A. Ouensanga, and S. Gaspard, J. Hazard. Mater., 161, 649 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. R. Han, Y. Wang, Q. Sun, L. Wang, J. Song, X. He, and C. Dou, J. Hazard. Mater., 175, 1056 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanja Kokol.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kokol, V., Vivod, V., Arnuš, S. et al. Zeolite Integrated Nanocellulose Films for Removal of Loose Anionic Reactive Dye by Adsorption vs. Filtration Mode during Textile Laundering. Fibers Polym 19, 1556–1566 (2018). https://doi.org/10.1007/s12221-018-8036-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-018-8036-z

Keywords

Navigation