Skip to main content
Log in

Fabrication of Herbal Hemostat Films Loaded with Medicinal Tridax Procumbenns Extracts

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Biopolymeric materials have been widely explored to encapsulate active agents for food, medical and pharmaceutical applications. In this investigation, we have fabricated herbal film using two natural polymers; sodium alginate and pectin. The films were incorporated with medicinal plant extract of Tridax Procumbenns Linn. (TP) which exhibit blood clotting and wound healing activities. The physical, mechanical and morphological properties of the formulated films were studied. The retention of functional groups of TP extract included in the films, and hence it biological activity, was confirmed by FTIR. Physical characterization of the films containing TP extract revealed significant absorption capacity for SWF (simulated wound fluid), which was observed as ~8 g, SBF (simulated body fluid), which was ~7.2 g, and moisture vapor transmission rate, that was observed as 1500–2000 g/m2/24 h. All these parameters are vital for efficient wound healing. Further, the herbal films exhibited cellular biocompatibility against skin cells and exhibited haemostatic efficiency as indicated by thrombin generation (30 ng/ml) by TP extract loaded film. The herbal films displayed significant anti-microbial activities. Overall, the formulated herbal films exhibited significant potential as an effective material for efficient wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Boonkong, A. Petsom, and N. Thongchul, J. Mater. Sci.: Mater. Med., 24, 1581 (2013).

    CAS  Google Scholar 

  2. P. Ketan, P. Anjali, P. Rignesh, P. Bhavika, P. Priyank, and P. Dev, Indian J. Emerg. Med., 2, 93 (2016).

    Article  Google Scholar 

  3. M. Miraftab, Q. Qiao, J. Kennedy, S. Anand, and M. Groocock, Carbohydr. Polym., 53, 225 (2003).

    Article  CAS  Google Scholar 

  4. A. D. Sezer and E. Cevher, “Biomaterials Applications for Nanomedicine”, pp.383–414, Intech, Croatia, 2011.

    Google Scholar 

  5. X. Yang, W. Liu, N. Li, M. Wang, B. Liang, I. Ullah, A. L. Neve, Y. Feng, H. Chen, and C. Shi, Biomater. Sci., 5, 2357 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. A. M. Smith, S. Moxon, and G. Morris, “Biopolymers as Wound Healing Materials”, pp.261–287, Wound Healing Biomaterials, Elsevier, 2016.

  7. M. Rezvanian, N. Ahmad, M. C. I. M. Amin, and S.-F. Ng, Int. J. Biol. Macromol., 97, 131 (2017).

    Article  PubMed  CAS  Google Scholar 

  8. S. Jaya, T. Durance, and R. Wang, J. Microencapsul., 26, 143 (2009).

    Article  CAS  PubMed  Google Scholar 

  9. M. Sathianarayanan, N. Bhat, S. Kokate, and V. Walunj, Indian J. Fibre Text. Res., 35, 50 (2010).

    CAS  Google Scholar 

  10. H. Pareek, S. Sharma, B. S. Khajja, K. Jain, and G. Jain, BMC Complement. Altern. Med., 9, 48 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  11. H. Salahdeen, O. Yemitan, and A. Alada, Afr. J. Biomed. Res., 7, 27 (2004).

    Google Scholar 

  12. I. Margaret, R. P. Srinivasa, and J. Kaiser, Phytother. Res., 12, 285 (1998).

    Article  Google Scholar 

  13. Y. P. Talekar, B. Das, T. Paul, D. Talekar, K. Apte, and P. Parab, Asian J. Pharm. Clin. Res., 5, 141 (2012).

    Google Scholar 

  14. P. Ganesan and P. Pradeepa, Wound Med., 19, 15 (2017).

    Article  Google Scholar 

  15. M. Suryamathi, C. Ruba, P. Viswanathamurthi, V. Balasubramanian, and P. Perumal, Macromol. Res., 27, 55 (2019).

    Article  CAS  Google Scholar 

  16. M. Ip, S. L. Lui, V. K. Poon, I. Lung, and A. Burd, J. Med. Microbiol., 55, 59 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. S.-Y. Ong, J. Wu, S. M. Moochhala, M.-H. Tan, and J. Lu, Biomaterials, 29, 4323 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. S. L. Percival, P. Bowler, and D. Russell, J. Hosp. Infect., 60, 1 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. J.-J. Wang, H. Y. Chung, Y.-B. Zhang, G.-Q. Li, Y.-L. Li, W.-H. Huang, and G.-C. Wang, Phytochemistry, 122, 270 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. R. Mahajan and D. More, Int. J. Pharm. Pharm. Sci., 4, 498 (2012).

    Google Scholar 

  21. A. C. Bierhalz, M. A. da Silva, M. E. Braga, H. J. Sousa, and T. G. Kieckbusch, LWT-Food Sci. Technol., 57, 494 (2014).

    Article  CAS  Google Scholar 

  22. M. A. da Silva, A. C. K. Bierhalz, and T. G. Kieckbusch, Carbohydr. Polym., 77, 736 (2009).

    Article  CAS  Google Scholar 

  23. M. Rezvanian, M. C. I. M. Amin, and S.-F. Ng, Carbohydr. Polym., 137, 295 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. M. Teli and P. Pandit, ACS Sustainable Chem. Eng., 5, 8323 (2017).

    Article  CAS  Google Scholar 

  25. M. Goh, Y. Hwang, and G. Tae, Carbohydr. Polym., 147, 251 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. J. Sowjanya, J. Singh, T. Mohita, S. Sarvanan, A. Moorthi, N. Srinivasan, and N. Selvamurugan, Colloids and Surfaces B: Biointerfaces, 109, 294 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. J. Venkatesan, I. Bhatnagar, and S.-K. Kim, Marine Drugs, 12, 300 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. D. Archana, L. Upadhyay, R. Tewari, J. Dutta, Y. Huang, and P. Dutta, Indian J. Biotechnol., 12, 475 (2013).

    CAS  Google Scholar 

  29. K. Madhumathi, P. S. Kumar, S. Abhilash, V. Sreeja, H. Tamura, K. Manzoor, S. Nair, and R. Jayakumar, J. Mater. Sci.: Mater. Med., 21, 807 (2010).

    CAS  Google Scholar 

  30. G. Lan, B. Lu, T. Wang, L. Wang, J. Chen, K. Yu, J. Liu, F. Dai, and D. Wu, Colloids and Surfaces B: Biointerfaces, 136, 1026 (2015).

    Article  CAS  PubMed  Google Scholar 

  31. S. S. Biranje, P. V. Madiwale, K. C. Patankar, R. Chhabra, P. Dandekar-Jain, and R. V. Adivarekar, Int. J. Biol. Macromol., 121, 936 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. M.-A. Lungan, M. Popa, S. Racovita, G. Hitruc, F. Doroftei, J. Desbrieres, and S. Vasiliu, Carbohydr. Polym., 125, 323 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. R. D. Kale, V. G. Gorade, N. Madye, B. Chaudhary, P. S. Bangde, and P. P. Dandekar, Int. J. Biol. Macromol., 118, 1090 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. W. Cheng, J. He, Y. Wu, C. Song, S. Xie, Y. Huang, and B. Fu, Cellulose, 20, 2547 (2013).

    Article  CAS  Google Scholar 

  35. N. Gontard, S. Guilbert, and J. L. CUQ, J. Food Sci., 58, 206 (1993).

    Article  CAS  Google Scholar 

  36. A. Mohandas, P. Sudheesh Kumar, B. Raja, V.-K. Lakshmanan, and R. Jayakumar, Int. J. Nanomed., 10, 53 (2015).

    CAS  Google Scholar 

  37. K. P. Melinda, X. Rathinam, K. Marimuthu, A. Diwakar, S. Ramanathan, S. Kathiresan, and S. Subramaniam, Asian Pac. J. Trop. Med., 3, 348 (2010).

    Article  Google Scholar 

  38. B. Hansen and G. B. Jemec, Arch. Dermatol., 138, 909 (2002).

    Article  PubMed  Google Scholar 

  39. L. Wang, E. Khor, A. Wee, and L. Y. Lim, J. Biomed. Mater. Res., 63, 610 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. C. Ikese, Z. Okoye, D. Kukwa, S. Adoga, and J. Lenka, Int. J. Pharm. Sci. Res., 6, 3391 (2015).

    Google Scholar 

  41. R. Dhanabalan, Ethnobotanical Leaflets, 12, 1090 (2008).

    Google Scholar 

  42. K.-T. Chung, T. Y. Wong, C.-I. Wei, Y.-W. Huang, and Y. Lin, Crit. Rev. Food Sci. Nutr., 38, 421 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. B. T. Ngadjui, B. M. Abegaz, F. Keumedjio, G. N. Folefoc, and G. W. Kapche, Phytochemistry, 60, 345 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. A. Kedari and R. Gupta, Int. J. Plant, Animal and Environm. Sci., 7, 127 (2017).

    CAS  Google Scholar 

  45. J. Venkatesan, J.-Y. Lee, D. S. Kang, S. Anil, S.-K. Kim, M. S. Shim, and D. G. Kim, Int. J. Biol. Macromol., 98, 515 (2017).

    Article  CAS  PubMed  Google Scholar 

  46. T. T. Cushnie and A. J. Lamb, Int. J. Antimicrob. Agents, 26, 343 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Authors are grateful for the financial support from the Technical Education Quality Improvement Programme (TEQIP), John Editha Kapoor fellowship and Council of Scientific & Industrial Research (CSIR)-SRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravindra Adivarekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutar, T., Bangde, P., Dandekar, P. et al. Fabrication of Herbal Hemostat Films Loaded with Medicinal Tridax Procumbenns Extracts. Fibers Polym 22, 2135–2144 (2021). https://doi.org/10.1007/s12221-021-0808-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-021-0808-1

Keywords

Navigation