Skip to main content

Advertisement

Log in

Reciprocity in the shadow of threat

  • Published:
International Review of Economics Aims and scope Submit manuscript

Abstract

This paper considers a partial equilibrium model of conflict where two agents differently evaluate a contested stake. Differently from common contest models, agents have the option of choosing a second instrument to affect the outcome of the conflict. The second instrument is assumed to capture positive investments in ‘conflict management’—labeled as ‘talks’. The focus is on the asymmetry in the evaluation of the stake: whenever the asymmetry in the evaluation of the stake is large there is no room for cooperation and a conflict trap emerges; whenever the degree of asymmetry falls within a critical interval, cooperation seems to emerge only in the presence of a unilateral concession; as the evaluations of the stake converge, only reciprocal concessions can sustain cooperation. Finally the concept of entropy is applied to measure conflict and conflict management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. On this point see Basu (2007).

  2. Pigou (1929, pp. 202–203).

  3. Gintis (2000, p. 262). Emphasis is in the original text. Italics turned into bold.

  4. Boulding (1963, p. 430).

  5. In recent years several studies extended Hirshleifer’s basic model. See among others: Grossman (1991, 1998), Skaperdas (1992), Neary (1997a), Anderton et al. (1999), Dixit (2004), Spolaore (2004), Caruso (2006, 2007). A survey has been produced in Garfinkel and Skaperdas (2007).

  6. Selective seminal contributions are by Tullock (1980), O’Keeffe et al. (1984), Rosen (1986), Dixit (1987), Amegashie (2006). See then Skaperdas (1996), Clark and Riis (1998) for a basic axiomatization.

  7. Of course, being in a partial equilibrium framework the classical tradeoff between ‘butter’ and ‘guns’ is not considered.

  8. Following Nti (1999), under constant returns to scale in fighting, a contest with asymmetric valuations has a unique pure strategy Nash equilibrium if and only if the sum of the valuations is larger than the higher evaluation, x + δx > x.

  9. Consider, among others, some applications of entropy to social sciences in Gabor and Gabor (1958). Entropy has also been proposed as a measure of competitiveness and diversification in market structure: see Attaran and Zwick (1989) and Horowitz and Horowitz (1968).

  10. The form adopted here is the one presented in Campiglio (1999, Chap. 4).

References

  • Amegashie AJ (2006) A contest success function with a tractable noise parameter. Public Choice 126:135–144

    Article  Google Scholar 

  • Anderton CH (2000) An insecure economy under ratio and logistic conflict technologies. J Conflict Resolut 44(6):823–838

    Article  Google Scholar 

  • Anderton CH, Anderton RA, Carter J (1999) Economic activity in the shadow of conflict. Econ Inq 17(1):166–179

    Google Scholar 

  • Attaran M, Zwick M (1989) An information theory approach to measuring industrial diversification. J Econ Stud 16(1):19–30

    Article  Google Scholar 

  • Baik KH (1998) Difference-form contest success functions and efforts levels in contests. Eur J Polit Econ 14:685–701

    Article  Google Scholar 

  • Baik KH, Shogran JF (1995) Contests with spying. Eur J Polit Econ 11:441–451

    Article  Google Scholar 

  • Basu K (2007) Coercion, contract and the limits of the market. Soc Choice Welfare 29:559–579

    Article  Google Scholar 

  • Bhagwati JN (1982) Directly unproductive, profit-seeking (DUP) activities. J Polit Econ 9(5):988–1002

    Article  Google Scholar 

  • Boulding KE (1963) Towards a pure theory of threat systems. Am Econ Rev Pap Proc 53(2):424–434

    Google Scholar 

  • Boulding KE (1973) The economy of love and fear. Wadsworth, Belmont

    Google Scholar 

  • Campiglio L (1999) Mercato, prezzi e politica economica. Il Mulino, Bologna

    Google Scholar 

  • Caruso R (2005) Asimmetrie negli incentivi, equilibrio competitivo e impegno agonistico: distorsioni in presenza di doping e combine. Riv Dir Econ Sport 1(3):13–38

    Google Scholar 

  • Caruso R (2006) Conflict and conflict management with interdependent instruments and asymmetric stakes (The Good Cop and the Bad Cop Game). Peace Econ Peace Sci Public Pol 12(1), art 1

  • Caruso R (2007) Continuing conflict and stalemate: a note. Econ Bull 4(17):1–8. http://economicsbulletin.vanderbilt.edu/2007/volume4/EB-07D70005A.pdf

    Google Scholar 

  • Clark DJ, Riis C (1998) Contest success functions: an extension. Econ Theory 11:201–204

    Article  Google Scholar 

  • Dixit A (1987) Strategic behavior in contests. Am Econ Rev 77(5): 891–898

    Google Scholar 

  • Dixit A (2004) Lawlessness and economics, alternative modes of governance. Princeton University Press, Princeton

    Google Scholar 

  • Epstein GS, Hefeker C (2003) Lobbying contests with alternative instruments. Econ Gov 4:81–89

    Article  Google Scholar 

  • Gabor A, Gabor D (1958) L’entropie comme mesure de la liberté sociale et économique. Cahiers de l’Institut de Science Économique Appliquée, vol 72, pp 13–25

  • Garfinkel MR, Skaperdas S (2007) Economics of conflict: an overiew. In: Sandler T, Hartley K (eds) Handbook of defense economics, vol 22, chap 22

  • Gintis H (2000) Game theory evolving. Princeton University Press, Princeton

    Google Scholar 

  • Grossman HI (1991) A general equilibrium model of insurrections. Am Econ Rev 81(4):912–921

    Google Scholar 

  • Grossman HI (1998) Producers and predators. Pac Econ Rev 3(3):169–187

    Article  Google Scholar 

  • Harsanyi JC (1965) Bargaining and conflict situations in the light of a new approach to game theory. Am Econ Rev 55(1/2):447–457

    Google Scholar 

  • Hausken K (2005) Production and conflict models versus rent-seeking models. Public Choice 123:59–93

    Article  Google Scholar 

  • Hillman AL, Riley JG (1989) Politically contestable rents and transfers. Econ Polit 1(1):17–39

    Article  Google Scholar 

  • Hirshleifer J (1988) The analytics of continuing conflict. Synthese 76(2): 201–233. Reprinted by Center for International and Strategic Affairs, CISA, University of California

    Google Scholar 

  • Hirshleifer J (1989) Conflict and rent-seeking success functions, ratio vs. difference models of relative success. Public Choice 63:101–112

    Article  Google Scholar 

  • Horowitz A, Horowitz I (1968) Entropy, Markov processes and competition in the brewing industry. J Ind Econ 16:196–211

    Article  Google Scholar 

  • Isard W, Smith C (1982) Conflict analysis and practical management procedures. An introduction to peace science. Ballinger, Cambridge

    Google Scholar 

  • Konrad K (2000) Sabotage in rent-seeking. J Law Econ Organ 16(1): 155–165

    Article  Google Scholar 

  • Nash J (1953) Two-person cooperative games. Econometrica 21(1):128–140

    Article  Google Scholar 

  • Neary HM (1997a) Equilibrium structure in an economic model of conflict. Econ Inq 35(3):480–494

    Article  Google Scholar 

  • Neary HM (1997b) A comparison of rent-seeking models and economics models of conflict. Public Choice 93:373–388

    Article  Google Scholar 

  • Nti KO (1999) Rent-seeking with asymmetric valuations. Public Choice 98:415–430

    Article  Google Scholar 

  • Nti KO (2004) Maximum efforts in contests with asymmetric valuations. Eur J Polit Econ 20:1059–1066

    Article  Google Scholar 

  • O’Keeffe M, Viscusi KW, Zeckhauser RJ (1984) Economic contests: comparative reward schemes. J Lab Econ 2(1):27–56

    Article  Google Scholar 

  • Pigou AC ([1921]1929) The economics of welfare, 3rd edn. MacMillan, London

  • Rosen S (1986) Prizes and incentives in elimination tournaments. Am Econ Rev 76(4):701–715

    Google Scholar 

  • Schelling TC (1960) The strategy of conflict. Harvard University Press, Cambridge

    Google Scholar 

  • Schelling TC (1966) Arms and influence. Yale University Press, New Haven

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Skaperdas S (1992) Cooperation, conflict, and power in the absence of property rights. Am Econ Rev 82(4):720–739

    Google Scholar 

  • Skaperdas S (1996) Contest success functions. Econ Theory 7:283–290

    Google Scholar 

  • Spolaore E (2004) Economic integration, international conflict and political unions. Riv Pol Econ IX–X:3–50

    Google Scholar 

  • Tullock G (1980) Efficient rent seeking. In: Buchanan JM, Tollison RD, Tullock G (eds) Toward a theory of the rent-seeking society. Texas A&M University, College Station, pp 97–112

    Google Scholar 

Download references

Acknowledgments

This paper has been presented at the conference, Reciprocity, Theories and Facts, February 22–24, Verbania and in a seminar held at the University of Pisa where I benefited from illuminating comments. I also warmly thank Aurelie Bonein, Luigi Campiglio, Vito Moramarco, Maurizio Motolese, Carsten K. Nielsen, Johan Moyersoen, Nicola Giocoli and Davide Tondani.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raul Caruso.

Appendix

Appendix

To check whether the critical points presented in (8) constitute a Nash Equilibrium I have to compute the Hessian matrices for both agents.

I start considering the payoff function of agent 1 evaluated at the critical points for agent 2, namely π rc1 (g 1, g *2 , h 1, h *2 ). It becomes:

$$ \begin{aligned}& \pi^{{\rm rc}}_{1} {\left({g_{1}, g^{*}_{2}, h_{1}, h^{*}_{2}} \right)} = \frac{g_{1} x{\left({\delta^{2} + 1} \right)}^{2} {\left({h_{1} + 1} \right)}}{\delta^{6} x^{2} + g_{1} {\left({\delta^{2} + 1} \right)}^{2} {\left({h_{1} + 1} \right)}} + \frac{\delta^{3} s_{2} x - {\left({\delta^{2} + 1} \right)}^{2} {\left({h_{1} + s_{2} + g_{1}} \right)}}{{\left({\delta^{2} + 1} \right)}^{2}}. \\& \\\end{aligned} $$

and the Hessian matrix is given by:

$$ \begin{aligned} H_{1} &= {\left({\begin{array}{*{20}c}\frac{\partial \pi^{{\rm rc}}_{1}}{\partial g_{1} g_{1}}& \frac{\partial \pi ^{{\rm rc}}_{1}}{\partial h_{1} g_{1}} \\\frac{\partial \pi ^{{\rm rc}}_{1}}{\partial g_{1} h_{1}}& \frac{\partial \pi ^{{\rm rc}}_{1}}{\partial h_{1} h_{1}} \\\end{array}} \right)}\\ &= {\left({\begin{array}{*{20}c}- \frac{2\delta^{6} x^{3} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{4} {\left({h_{1} + 1} \right)}^{2}}{{\left[{\delta^{6} x^{2} + g_{1} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{1} + 1} \right)}} \right]}^{3}}& \frac{\delta^{6} x^{3} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left[{\delta^{6} x^{2} - g_{1} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{1} + 1} \right)}} \right]}}{{\left[{\delta^{6} x^{2} + g_{1} {\left({\delta ^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{1} + 1} \right)}} \right]}^{3}} \\\frac{\delta^{6} x^{3} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left[{\delta^{6} x^{2} - g_{1} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{1} + 1} \right)}} \right]}}{{\left[{\delta^{6} x^{2} + g_{1} {\left({\delta ^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{1} + 1} \right)}} \right]}^{3}}& - \frac{2\delta^{6} g^{2}_{1} x^{3} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{4}}{{\left[{\delta ^{6} x^{2} + g_{1} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{1} + 1} \right)}} \right]}^{3}} \\ \end{array}} \right)} \\\end{aligned} $$

Then, substitute the critical values h *1 , g *1 . The matrix becomes:

$$ H_{1} = {\left({\begin{array}{*{20}c} - \frac{2{\left({\delta^{2} + 1} \right)}}{\delta^{2} x}& \frac{{\left({\delta^{2} + 1} \right)}{\left({\delta^{2} - 1} \right)}}{\delta^{2} x} \\ \frac{{\left({\delta^{2} + 1} \right)}{\left({\delta^{2} - 1} \right)}}{\delta^{2} x}& - \frac{2{\left({\delta^{2} + 1} \right)}}{\delta^{2} x} \\\end{array}} \right)} $$

Let H 1k denote the kth order leading principal submatrix of H 1 for k = 1,2. The determinant of the kth order leading principal minor of H 1k is denoted by | H 2k |. The leading principal minors alternate signs as follows:

$$ {\left| {H_{{11}}} \right|} < 0 $$
$$ {\left| {H_{{12}}} \right|} > 0 $$

Then I compute the payoff function for agent 2 π rc2 (g *1 , g 2, h *1 , h 2),

$$ \begin{aligned}& \pi^{{\rm rc}}_{2} {\left({g^{*}_{1}, g_{2}, h^{*}_{1}, h_{2}} \right)} = \frac{g_{2} \delta x{\left({\delta^{2} + 1} \right)}^{2} {\left({h_{2} + 1} \right)}}{\delta^{4} x^{2} + g_{2} {\left({\delta^{2} + 1} \right)}^{2} {\left({h_{2} + 1} \right)}} + \frac{\delta^{2} s_{1} x - {\left({\delta^{2} + 1} \right)}^{2} {\left({h_{2} + s_{1} + g_{2}} \right)}}{{\left({\delta^{2} + 1} \right)}^{2}}. \\& \\\end{aligned} $$

and the Hessian matrix is given by:

$$ \begin{aligned} H_{2} &= {\left({\begin{array}{*{20}c}\frac{\partial \pi^{{\rm rc}}_{2}}{\partial g_{2} g_{2}}& \frac{\partial \pi ^{{\rm rc}}_{2}}{\partial h_{2} g_{2}} \\\frac{\partial \pi ^{{\rm rc}}_{2}}{\partial g_{2} h_{2}}& \frac{\partial \pi ^{{\rm rc}}_{2}}{\partial h_{2} h_{2}} \\\end{array}} \right)} \\ & = {\left({\begin{array}{*{20}c}- \frac{2\delta^{5} x^{3} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{4} {\left({h_{2} + 1} \right)}^{2}}{{\left[{\delta^{4} x^{2} + g_{2} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{2} + 1} \right)}} \right]}^{3}}& \frac{\delta^{5} x^{3} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left[{\delta^{4} x^{2} - g_{2} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{2} + 1} \right)}} \right]}}{{\left[{\delta^{4} x^{2} + g_{2} {\left({\delta ^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{2} + 1} \right)}} \right]}^{3}} \\ \frac{\delta^{5} x^{3} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left[{\delta^{4} x^{2} - g_{2} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{2} + 1} \right)}} \right]}}{{\left[{\delta^{4} x^{2} + g_{2} {\left({\delta ^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{2} + 1} \right)}} \right]}^{3}}& - \frac{2\delta^{5} g^{2}_{2} x^{3} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{4}}{{\left[{\delta ^{6} x^{2} + g_{2} {\left({\delta^{4} + 2\delta^{2} + 1} \right)}^{2} {\left({h_{2} + 1} \right)}} \right]}^{3}} \\\end{array}} \right)} \\\end{aligned} $$

Substitute g *2 and h *2 the matrix becomes:

$$ H_{2} = {\left({\begin{array}{*{20}c}- \frac{2{\left({\delta^{2} + 1} \right)}}{\delta x}& \frac{{\left({\delta^{2} + 1} \right)}{\left({1 - \delta^{2}} \right)}}{\delta^{3} x} \\ \frac{{\left({\delta^{2} + 1} \right)}{\left({1 - \delta^{2}} \right)}}{\delta^{3} x}& - \frac{2{\left({\delta^{2} + 1} \right)}}{\delta x} \\\end{array}} \right)} $$

Also in this case, let H 2k denote the kth order leading principal submatrix of H 2 for k = 1,2. The determinant of the kth order leading principal minor of H 2 is denoted by | H 2k |. The leading principal minors alternate in sign as follows:

$$ {\left| {H_{{21}}} \right|} < 0 $$
$$ {\left| {H_{{22}}} \right|} > 0 \Leftrightarrow \delta > {\sqrt 3}/3 $$

Since the Hessian matrix for agent 2 is not negative semidefinite it is clear that to have an interior solution for an equilibrium the value of δ must be larger than a critical value. That is, the asymmetry in the evaluation of the stake must not be too large.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caruso, R. Reciprocity in the shadow of threat. Int. Rev. Econ. 55, 91–111 (2008). https://doi.org/10.1007/s12232-007-0029-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12232-007-0029-y

Keywords

JEL Classification

Navigation