Skip to main content
Log in

Wetland Soil Co2 Efflux Along a Latitudinal Gradient of Spatial and Temporal Complexity

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Foundation plant species play an important functional role in modifying microenvironment through vegetation structure and by influencing soil properties. Mangroves and salt marsh differ in vegetation structure, yet offer similar ecosystem services. This work aimed to understand how different vegetation classes and abiotic factors along a latitudinal gradient of spatial and temporal complexity affect soil CO2 efflux. Soil CO2 efflux, biomass, soil properties, and soil and air temperature were measured in July 2015 and January 2016 in situ at 10 sites along a 342-km latitudinal gradient on the Atlantic coast of Florida. Mean CO2 flux values ranged from 0.41 ± 0.19 to 2.03 ± 0.19 μmol m−2 s−1 across vegetation classes, and efflux values in mangrove plots were not significantly different between sampling dates, whereas ecotone and salt marsh efflux values were. On average, CO2 flux was 1.11 ± 0.18 μmol m−2 s−1 greater in July than in January across plots. There was no significant trend between efflux and aboveground biomass and a positive trend between belowground biomass and CO2 efflux. Edaphic parameters (organic matter content (%), soil N, organic C, and pH) were comparable across all vegetation class soils and there was a positive trend between soil temperature and flux. Soil efflux had an inverse relationship with latitude; in January, there is an increase in efflux with a decrease in latitude, while in July, efflux increases with an increase in latitude. Consequently, we assert that differences in CO2 efflux were due to soil temperature and species productivity along the latitudinal gradient studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alongi, D.M., J. Pfitzner, L.A. Trott, F. Tirendi, P. Dixon, and D.W. Klumpp. 2005. Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang estuary, China. Estuarine, Coastal and Shelf Science 63 (4): 605–618.

    Article  CAS  Google Scholar 

  • Alongi, D. 2009. The energetics of mangrove forests. Springer Science & Business Media. https://books.google.com/books?hl=en&lr=&id=tHM54IKQSv4C&oi=fnd&pg=PR3&dq=Alongi+2009&ots=snscJi797g&sig=33V7SjKG9N6BZDEKfUpZOaC3OXM#v=onepage&q=Alongi%202009&f=false

  • Alongi, D.M. 2014. Carbon cycling and storage in mangrove forests. Annual Review of Marine Science 6 (1): 195–219.

    Article  Google Scholar 

  • Bauer, J.E., W.J. Cai, P.A. Raymond, T.S. Bianchi, C.S. Hopkinson, and P.A. Regnier. 2013. The changing carbon cycle of the coastal ocean. Nature 504 (7478): 61–70.

    Article  CAS  Google Scholar 

  • Baustian, J.J., I.A. Mendelssohn, and M.W. Hester. 2012. Vegetation's importance in regulating surface elevation in a coastal salt marsh facing elevated rates of sea level rise. Global Change Biology 18 (11): 3377–3382.

    Article  Google Scholar 

  • Bouillon, S., A.V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N.C. Duke, E. Kristensen, S.Y. Lee, C. March and, J.J. Middelburg, V.H. Rivera-Monroy, T.J. Smith III, and R.R. Twilley. 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles 22(2): 1–12.

  • Cavanaugh, K.C., J.R. Kellner, A.J. Forde, D.S. Gruner, J.D. Parker, W. Rodriguez, and I.C. Feller. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences 111 (2): 723–727.

    Article  CAS  Google Scholar 

  • Chen, G.C., N.F.Y. Tam, and Y. Ye. 2010. Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China. Science of the Total Environment 408 (13): 2761–2767.

    Article  CAS  Google Scholar 

  • Chen, G.C., N.F. Tam, and Y. Ye. 2012. Spatial and seasonal variations of atmospheric N 2 O and CO 2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics. Soil Biology and Biochemistry 48: 175–181.

    Article  CAS  Google Scholar 

  • Chen, G.C., Y.I. Ulumuddin, S. Pramudji, S.Y. Chen, B. Chen, Y. Ye, D.Y. Ou, Z.Y. Ma, H. Huang, and J.K. Wang. 2014. Rich soil carbon and nitrogen but low atmospheric greenhouse gas fluxes from North Sulawesi mangrove swamps in Indonesia. Science of the Total Environment 487: 91–96.

    Article  CAS  Google Scholar 

  • Chen, G., B. Chen, D. Yu, N.F. Tam, Y. Ye, and S. Chen. 2016. Soil greenhouse gas emissions reduce the contribution of mangrove plants to the atmospheric cooling effect. Environmental Research Letters 11 (12): 124019.

    Article  Google Scholar 

  • Climate-Data.org. Köppen climatic classifications of Florida. https://en.climate-data.org/region/1000/ Accessed on August 31st, 2017.

  • Comas, L.H., and D.M. Eissenstat. 2004. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Functional Ecology 18 (3): 388–397.

    Article  Google Scholar 

  • Comeaux, R.S., M.A. Allison, T.S. Bianchi, and T.S. 2012. Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels. Estuarine, Coastal and Shelf Science 96: 81–95.

    Article  CAS  Google Scholar 

  • Couteaux, M.M., P. Bottner, and B. Berg. 1995. Litter decomposition, climate and liter quality. Trends in Ecology & Evolution 10 (2): 63–66.

    Article  CAS  Google Scholar 

  • Dias, A.T.C., J. Van Ruijven, and F. Berendse. 2010. Plant species richness regulates soil respiration through changes in productivity. Oecologia 163 (3): 805–813.

    Article  Google Scholar 

  • Donato, D.C., J.B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham, and M. Kanninen. 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4 (5): 293–297.

    Article  CAS  Google Scholar 

  • Doughty, C.L., J.A. Langley, W.S. Walker, I.C. Feller, R. Schaub, and S.K. Chapman. 2016. Mangrove range expansion rapidly increases coastal wetland carbon storage. Estuaries and Coasts 39 (2): 385–396.

    Article  CAS  Google Scholar 

  • Geng, Y., Y. Wang, K. Yang, S. Wang, H. Zeng, F. Baumann, P. Kuehn, T. Scholten, and J.S. He. 2012. Soil respiration in Tibetan alpine grasslands: Belowground biomass and soil moisture, but not soil temperature, best explain the large-scale patterns. PloS one 7(4), p.e34968.

  • Glick, P., B.A. Stein, and N.A. Edelson. 2011. Scanning the conservation horizon: A guide to climate change vulnerability assessment, 168 p. Washington, DC: National Wildlife Federation.

    Google Scholar 

  • Han, G., Q. Xing, Y. Luo, R. Rafique, J. Yu, and N. Mikle. 2014. Vegetation types alter soil respiration and its temperature sensitivity at the field scale in an estuary wetland. PLoS One 9 (3): e91182.

    Article  Google Scholar 

  • Hanson, P.J., N.T. Edwards, C.T. Garten, and J.A. Andrews. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48 (1): 115–146.

    Article  CAS  Google Scholar 

  • Harden, J.W., J. Sanderman, and G. Hugelius. 2017. Soils and the Carbon Cycle. In Soils and the carbon cycle. The International Encyclopedia of Geography.

    Chapter  Google Scholar 

  • Henry, K.M., and R.R. Twilley. 2013. Soil development in a coastal Louisiana wetland during a climate-induced vegetation shift from salt-marsh to mangrove. Journal of Coastal Research 29 (6): 1273–1283.

    Article  Google Scholar 

  • Hopkinson, C.S., J.G. Gosselink, and R.T. Parrando. 1978. Aboveground production of seven marsh plant species in coastal Louisiana. Ecology 59 (4): 760–769.

    Article  Google Scholar 

  • Howarth, R.W., and J.M. Teal. 1979. Sulfate reduction in a New England salt marsh. Limnology 24.

  • Howes, B.L., J.W.H. Dacey, and J.M. Teal. 1985. Annual carbon mineralization and belowground production of Spartina alterniflora in a New England salt marsh. Ecology 66 (2): 595–605.

    Article  CAS  Google Scholar 

  • Howes, B.L., J.W.H. Dacey, and D.D. Goehringer. 1986. Factors controlling the growth form of Spartina alterniflora: feedbacks between above-ground production, sediment oxidation, nitrogen and salinity. The Journal of Ecology 881–898.

  • Inglett, K.S., P.W. Inglett, and R.K. Reddy. 2011. Soil microbial community composition in a restored calcareous subtropical wetland. Soil Science Society of America Journal 75 (5): 1731–1740.

    Article  CAS  Google Scholar 

  • IPCC 2014. Field, C.B., V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, and B. Girma. 2014. Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1132.

  • Jackson, R.B., C.W. Cook, J.S. Pippen, and S.M. Palmer. 2009. Increased belowground biomass and soil CO2 fluxes after a decade of carbon dioxide enrichment in a warm-temperate forest. Ecology 90 (12): 3352–3366.

    Article  Google Scholar 

  • Jobbágy, E.G., and R.B. Jackson. 2000. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecological Applications 10 (2): 423–436.

    Article  Google Scholar 

  • Kirwan, M.L., and L.K. Blum. 2011. Enhanced decomposition offsets enhanced productivity and soil carbon accumulation in coastal wetlands responding to climate change. Biogeosciences 8 (4): 987–993.

    Article  CAS  Google Scholar 

  • Komiyama, A., J.E. Ong, and S. Poungparn. 2008. Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany 89 (2): 128–137.

    Article  Google Scholar 

  • Kristensen, E., S. Bouillon, T. Dittmar, and C. Marchand. 2008. Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany 89 (2): 201–209.

    Article  CAS  Google Scholar 

  • Leopold, A., C. Marchand, J. Deborde, C. Chaduteau, and M. Allenbach. 2013. Influence of mangrove zonation on CO 2 fluxes at the sediment–air interface (New Caledonia). Geoderma 202: 62–70.

    Article  Google Scholar 

  • Leopold, A., C. Marchand, J. Deborde, and M. Allenbach. 2015. Temporal variability of CO2 fluxes at the sediment-air interface in mangroves (New Caledonia). Science of the Total Environment 502: 617–626.

    Article  CAS  Google Scholar 

  • Lewis, D.B., J.A. Brown, and K.L. Jimenez. 2014. Effects of flooding and warming on soil organic matter mineralization in Avicennia germinans mangrove forests and Juncus roemerianus salt-marshes. Estuarine, Coastal and Shelf Science 139: 11–19.

    Article  CAS  Google Scholar 

  • Liang, J.I.N., L.U. Chang-Yi, Y.E. Yong, and Y.E. Gong-Fu. 2013. Soil effluxin a subtropical mangrove wetland in the Jiulong River estuary, China. Pedosphere 23 (5): 678–685.

    Article  Google Scholar 

  • LI-COR Inc. 2003. 6400–09 Soil CO2 Flux Chamber Instruction Manual. https://www.licor.com/documents/iqpbvjolxbhrf52mlimp

  • Lovelock, C.E., R.W. Ruess, and I.C. Feller. 2006. Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability. Tree Physiology 26 (12): 1601–1606.

    Article  CAS  Google Scholar 

  • Lovelock, C.E. 2008. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11 (2): 342–354.

    Article  CAS  Google Scholar 

  • Lynch, J.M., A. Benedetti, H. Insam, M.P. Nuti, K. Smalla, V. Torsvik, and P. Nannipieri. 2004. Microbial diversity in soil: Ecological theories, the contribution of molecular techniques and the impact of transgenic plants and transgenic microorganisms. Biology and Fertility of Soils 40 (6): 363–385.

    Article  CAS  Google Scholar 

  • Maestre, F.T., and J. Cortina. 2003. Small-scale spatial variation in soil CO2 efflux in a Mediterranean semiarid steppe. Applied Soil Ecology 23 (3): 199–209.

    Article  Google Scholar 

  • Maier, M., H. Schack-Kirchner, E.E. Hildebrand, and D. Schindler. 2011. Soil CO2 efflux vs. soil respiration: Implications for flux models. Agricultural and Forest Meteorology 151 (12): 1723–1730.

    Article  Google Scholar 

  • McKee, K.L., I.A. Mendelssohn, and M.W. Hester. 1988. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. American Journal of Botany 75 (9): 1352–1359.

    Article  Google Scholar 

  • Mooshammer, M., W. Wanek, J. Schnecker, B. Wild, S. Leitner, F. Hofhansl, and K.M. Keiblinger. 2012. Stoichiometric controls of nitrogen and phosphorus cycling in decomposing beech leaf litter. Ecology 93 (4): 770–782.

    Article  Google Scholar 

  • Osland, M.J., N. Enwright, R.H. Day, and T.W. Doyle. 2013. Winter climate change and coastal wetland foundation species: Salt-marshes vs. mangrove forests in the southeastern United States. Global Change Biology 19 (5): 1482–1494.

    Article  Google Scholar 

  • Patterson, C.S., and I.A. Mendelssohn. 1991. A comparison of physicochemical variables across plant zones in a mangal/salt marsh community in Louisiana. Wetlands 11 (1): 139–161.

    Article  Google Scholar 

  • Perry, C.L., and I.A. Mendelssohn. 2009. Ecosystem effects of expanding populations of Avicennia germinans in a Louisiana salt-marsh. Wetlands 29 (1): 396–406.

    Article  Google Scholar 

  • Poungparn, S., A. Komiyama, A. Tanaka, T. Sangtiean, C. Maknual, S. Kato, and P. Patanaponpaiboon. 2009. Carbon dioxide emission through soil respiration in a secondary mangrove forest of eastern Thailand. Journal of Tropical Ecology 25 (4): 393–400.

    Article  Google Scholar 

  • Pregitzer, K.S., J.L. DeForest, A.J. Burton, M.F. Allen, R.W. Ruess, and R.L. Hendrick. 2002. Fine root architecture of nine north American trees. Ecological Monographs 72 (2): 293–309.

    Article  Google Scholar 

  • Pülmanns, N., K. Diele, U. Mehlig, and I. Nordhaus. 2014. Burrows of the semi-terrestrial crab Ucides cordatus enhance CO2 relases in a north Brazilian mangrove forest. PLoS One 9 (10): e109532. https://doi.org/10.1371/journal.pone.0109532.

    Article  CAS  Google Scholar 

  • Raich, J.W., and W.H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44 (2): 81–99.

    Article  Google Scholar 

  • Raich, J.W., A.E. Russell, and P.M. Vitousek. 1997. Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai‘i. Ecology 78 (3): 707–721.

    Google Scholar 

  • Reddy, K.R., and R.D. DeLaune. 2008. Biogeochemistry of wetlands: Science and applications. Boca Raton, Florida: CRC press.

    Book  Google Scholar 

  • Rees, A.T., M.M. Burrell, T.G. Entwistle, J.B. Hammond, D. Kirk, and N.J. Kruger. 1988. Effects of low temperature on the respiratory metabolism of carbohydrates by plants. In Symposia of the Society for Experimental Biology 42: 377–393.

    Google Scholar 

  • Reichstein, M., A. Rey, A. Freibauer, J. Tenhunen, R. Valentini, J. Banza, and R. Joffre. 2003. Modeling temporal and large scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Global Biogeochemical Cycles 17 (4).

  • Roland, M., S. Vicca, M. Bahn, T. Ladreiter-Knauss, M. Schmitt, and I.A. Janssens. 2015. Importance of nondiffusive transport for soil CO2 efflux in a temperate mountain grassland. Journal of Geophysical Research: Biogeosciences 120 (3): 502–512.

    CAS  Google Scholar 

  • Schlesinger, W.H., and J.A. Andrews. 2000. Soil respiration and the global carbon cycle. Biogeochemistry 48 (1): 7–20.

    Article  CAS  Google Scholar 

  • Shi, P.L., X.Z. Zhang, Z.M. Zhong, and H. Ouyang. 2006. Diurnal and seasonal variability of soil CO2 efflux in a cropland ecosystem on the Tibetan plateau. Agricultural and Forest Meteorology 137 (3): 220–233.

    Article  Google Scholar 

  • Simpson, L.T., T.Z. Osborne, L.J. Duckett, and I.C. Feller. 2017. Carbon storages along a climate induced coastal wetland gradient. Wetlands 1-13.

  • Stein, B.A., P. Glick, N.A. Edelson, and A. Staudt. 2014. Climate-smart conservation: Putting adaptation principles into practice. Washington, DC: National Wildlife Federation.

    Google Scholar 

  • Strickland, M.S., C. Lauber, N. Fierer, and M.A. Bradford. 2009. Testing the functional significance of microbial community composition. Ecology 90 (2): 441–451.

    Article  Google Scholar 

  • Teal, J.M., and B.L. Howes. 1996. Interannual variability of a salt-marsh ecosystem. Limnology and Oceanography 41 (4): 802–809.

    Article  Google Scholar 

  • Tomlinson, P.B. 1986. The botany of mangroves. Cambridge: Cambridge University Press. https://books.google.com/books/about/The_Botany_of_Mangroves.html?id=uwT6SMY-oNAC, 419p.

  • Turner, R.E., B.L. Howes, J.M. Teal, C.S. Milan, E.M. Swenson, and D.D. Goehringer-Toner. 2009. Salt marshes and eutrophication: An unsustainable outcome. Limnology and Oceanography 54 (5): 1634–1642.

    Article  CAS  Google Scholar 

  • Troxler, T.G., J.G. Barr, J.D. Fuentes, V. Engel, G. Anderson, C. Sanchez, C., and S.E. Davis. 2015. Component-specific dynamics of riverine mangrove CO2 efflux in the Florida coastal Everglades. Agricultural and Forest Meteorology 213: 273–282.

  • Twilley, R.R., R.H. Chen, and T. Hargis. 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution 64 (1–2): 265–288.

    Article  CAS  Google Scholar 

  • Wang, L., P. D'Odorico, S. Manzoni, A. Porporato, and S. Macko. 2009. Carbon and nitrogen dynamics in southern African savannas: The effect of vegetation-induced patch-scale heterogeneities and large scale rainfall gradients. Climatic Change 94 (1-2): 63–76.

    Article  CAS  Google Scholar 

  • Zheng, D., E.R. Hunt Jr, and S.W. Running. 1993. A daily soil temperature model based on air temperature and precipitation for continental applications. Climate Research 183-191.

Download references

Acknowledgements

The authors would like to thank Florida State Parks, the Merritt Island National Wildlife Refuge, Guana–Tolmato–Matanzas National Estuarine Research Reserve, and Canaveral National Seashore for permits and unabridged access to their parks. We also thank L.J. Duckett, M.L. Lehmann, and Z.R. Foltz for field and lab assistance, and S.K. Chapman and two anonymous reviewers for their edits and suggestions, which greatly improved this manuscript. This is contribution no. 1088 of the Smithsonian Marine Station.

Funding

This research was funded by the National Aeronautics and Space Administration (NASA) Climate and Biological Response program (NNX11AO94G) and the National Science Foundation (NSF) MacroSystems Biology program (EF1065821).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L.T. Simpson.

Additional information

Communicated by Dennis Swaney

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simpson, L., Osborne, T.Z. & Feller, I.C. Wetland Soil Co2 Efflux Along a Latitudinal Gradient of Spatial and Temporal Complexity. Estuaries and Coasts 42, 45–54 (2019). https://doi.org/10.1007/s12237-018-0442-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0442-3

Keywords

Navigation