Skip to main content
Log in

Long-Term Changes in Gelatinous Zooplankton in Chesapeake Bay, USA: Environmental Controls and Interspecific Interactions

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Gelatinous zooplankton (GZ) populations are sensitive to environmental perturbations, and regional changes in their abundance may be associated with degraded environmental conditions. Two time series of GZ abundances were used to analyze the population dynamics of gelatinous zooplankton in the Chesapeake Bay, USA from 1984 to 2012. Annual and interannual variations in population size and distribution of the scyphozoan medusae Chrysaora chesapeakei, Aurelia aurita, Cyanea capillata, and Rhopilema virrilli, as well as the lobate ctenophore Mnemiopsis leidyi, were compared with environmental conditions and other biological data. Scyphozoan population control by environmental factors was primarily a result of mortality and asexual reproduction by the benthic scyphistomae. C. chesapeakei was present year-round, but biovolume was highest in July–September and in salinities 9–20. M. leidyi populations were primarily controlled by C. chesapeakei predation and were most abundant in June, after waters warmed above 18 °C but before C. chesapeakei bloomed. Low bottom-water salinity was negatively correlated with summer C. chesapeakei biovolume, and low bottom dissolved oxygen concentrations delayed the timing of the peak bloom. Total GZ biovolume decreased in both time series (1984–2012), likely due to decreases in C. chesapeakei abundance. This reduction in C. chesapeakei allowed for a concurrent increase in M. leidyi and decrease in copepod abundance. Predicted future increases in spring streamflow and spring hypoxia due to global climate change would further decrease C. chesapeakei abundance, possibly allowing for future increase in M. leidyi populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Albert, David J. 2010. Vertical distribution of Aurelia labiata (Scyphozoa) jellyfish in Roscoe Bay is similar during flood and ebb tides. Journal of Sea Research 64 (3): 422–425.

    Article  Google Scholar 

  • Albert, David J. 2011. What’s on the mind of a jellyfish? A review of behavioural observations on Aurelia sp. jellyfish. Neuroscience and Biobehavioral Reviews 35 (3): 474–482.

    Article  Google Scholar 

  • Bayha, Keith M., Allen G. Collins, and Patrick M. Gaffney. 2017. Multigene phylogeny of the scyphozoan jellyfish family Pelagiidae reveals that the common U.S. Atlantic Sea nettle comprises two distinct species (Chrysaora quinquecirrha and C. chesapeakei). PeerJ 5: e3863. https://doi.org/10.7717/peerj.3863.

    Article  CAS  Google Scholar 

  • Breitburg, Denise L., and Rebecca Burrell. 2014. Predator-mediated landscape structure: Seasonal patterns of spatial expansion and prey control by Chrysaora quinquecirrha and Mnemiopsis leidyi. Marine Ecology Progress Series 510: 183–200.

    Article  Google Scholar 

  • Breitburg, Denise L., and Richard S. Fulford. 2006. Oyster-sea nettle interdependence and altered control within the Chesapeake Bay ecosystem. Estuaries and Coasts 29 (5): 776–784.

    Article  Google Scholar 

  • Breitburg, Denise L., Aaron Adamack, Kenneth A. Rose, Sarah E. Kolesar, Mary Beth Decker, Jennifer E. Purcell, Julie E. Keister, and James H. Cowan Jr. 2003. The pattern and influence of low dissolved oxygen in the Patuxent River, a seasonally hypoxic estuary. Estuaries 26 (2A): 280–297.

    Article  CAS  Google Scholar 

  • Brotz, Lucas, William W.L. Cheung, Kristin Kleisner, Evgeny Pakhomov, and Daniel Pauly. 2012. Increasing jellyfish populations: Trends in large marine ecosystems. Hydrobiologia 690 (1): 3–20.

    Article  Google Scholar 

  • Brown, Christopher W., Raleigh R. Hood, Zhen Li, Mary Beth Decker, Thomas F. Gross, Jennifer E. Purcell, and Harry V. Wang. 2002. Forecasting system predicts presence of sea nettles in Chesapeake Bay. Eos, Transactions American Geophysical Union 83 (30): 321.

    Article  Google Scholar 

  • Cargo, David G., and David R. King. 1990. Forecasting the abundance of the sea nettle, Chrysaora quinquecirrha, in the Chesapeake Bay. Estuaries 13 (4): 486–491.

    Article  Google Scholar 

  • Cargo, David G., and Leonard P. Schultz. 1966. Notes on the biology of the sea nettle, Chrysaora quinquecirrha, in Chesapeake Bay. Chesapeake Science 7 (2): 95–100.

    Article  Google Scholar 

  • Cargo, David G., and Leonard P. Schultz. 1967. Further observations on the biology of the sea nettle and jellyfishes in Chesapeake Bay. Chesapeake Science 8 (4): 209–220.

    Article  Google Scholar 

  • Ceh, Janja, Jorge Gonzalez, Aldo S. Pacheco, and José M. Riascos. 2015. The elusive life cycle of scyphozoan jellyfish – Metagenesis revisited. Scientific Reports 5 (1): 12037.

    Article  Google Scholar 

  • Cochran, William G. 1977. Sampling techniques. New York: Wiley.

    Google Scholar 

  • Condon, Robert H., and Deborah K. Steinberg. 2008. Development, biological regulation, and fate of ctenophore blooms in the York River estuary, Chesapeake Bay. Marine Ecology Progress Series 369: 153–168.

    Article  Google Scholar 

  • Condon, Robert H., and Deborah K. Steinberg. 2009. Zooplankton of the York River. Journal of Coastal Research 57: 66–79.

    Google Scholar 

  • Condon, Robert H., Mary Beth Decker, and Jennifer E. Purcell. 2001. Effects of low dissolved oxygen on survival and asexual reproduction of scyphozoan polyps (Chrysaora quinquecirrha). Hydrobiologia 451 (1/3): 89–95.

    Article  Google Scholar 

  • Condon, Robert H., Carlos M. Duarte, Kylie A. Pitt, Kelly L. Robinson, Cathy H. Lucas, Kelly R. Sutherland, Hermes W. Mianzan, Molly Bogeberg, Jennifer E. Purcell, Mary Beth Decker, Shin-ichi Uye, Laurence P. Madin, Richard D. Brodeur, Steven H.D. Haddock, Alenka Malej, Gregory D. parry, Elena Eriksen, Javier Quiñones, Marcelo Acha, Michel Harvey, James M. Arthus, and William M. Graham. 2013. Recurrent jellyfish blooms are a consequence of global oscillations. PNAS 110 (3): 1000–1005.

    Article  Google Scholar 

  • Cones, Harold N., and Dexter S. Haven. 1969. Distribution of Chrysaora quinquecirrha in the York river. Chesapeake Science 10 (2): 75–84.

    Article  Google Scholar 

  • Costello, J.H., B.K. Sullivan, D.J. Gifford, D. Van Keuren, and L.J. Sullivan. 2006. Seasonal refugia, shoreward thermal amplification, and metapopulation dynamics of the ctenophore Mnemiopsis leidyi in Narragansett Bay, Rhode Island. Limnology and Oceanography 51 (4): 1819–1831.

    Article  Google Scholar 

  • Costello, J.H., K.M. Bayha, H.W. Mianzan, T.A. Shiganova, and J.E. Purcell. 2012. Transitions of Mnemiopsis leidyi (Ctenophora: Lobata) from a native to an exotic species: A review. Hydrobiologia 690 (1): 21–46.

    Article  Google Scholar 

  • Cowan, James H., Jr., and Edward D. Houde. 1993. Relative predation potentials of scyphomedusae, ctenophores and planktivorous fish on ichthyoplankton in Chesapeake Bay. Marine Ecology Progress Series 95: 55–65.

    Article  Google Scholar 

  • Crum, Kevin P., Heidi L. Fuchs, Paul A.X. Bologna, and John J. Gaynor. 2014. Model-to-data comparisons reveal influence of jellyfish interactions on plankton community dynamics. Marine Ecology Progress Series 517: 105–119.

    Article  CAS  Google Scholar 

  • Decker, Mary Beth, Denise L. Breitburg, and Jennifer E. Purcell. 2004. Effects of low dissolved oxygen on zooplankton predation by the ctenophore Mnemiopsis leidyi. Marine Ecology Progress Series 280: 163–172.

    Article  Google Scholar 

  • Decker, M.B., C.W. Brown, R.R. Hood, J.E. Purcell, T.F. Gross, J.C. Matanoski, R.O. Bannon, and E.M. Setzler-Hamilton. 2007. Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Marine Ecology Progress Series 329: 99–113.

    Article  Google Scholar 

  • Diaz, Robert J., and Rutger Rosenberg. 1995. Marine benthic hypoxia: A review of its ecological effects and the behavioral responses of benthic macrofauna. Oceanography and Marine Biology, An Annual Review 33: 245–303.

    Google Scholar 

  • Diaz, Robert J., and Rutger Rosenberg. 2008. Spreading dead zones and consequences for marine ecosystems. Science 321 (5891): 926–929.

    Article  CAS  Google Scholar 

  • Diaz, Robert J., R.J. Neubauer, L.C. Schaffner, L. Pihl, and S.P. Baden. 1992. Continuous monitoring of dissolved oxygen in an estuary experiencing periodic hypoxia and the effect of hypoxia on macrobenthos and fish. Science of the Total Environment, Supplement 1992: 1055–1068.

  • Elliott, David T., James J. Pierson, and Michael R. Roman. 2013. Predicting the effects of coastal hypoxia on vital rates of the planktonic copepod Acartia tonsa. PLoS One 8 (5): e63987.

    Article  CAS  Google Scholar 

  • Gatz, A. John, Jr., Victor S. Kennedy, and Joseph A. Mihursky. 1973. Effects of temperature on activity and mortality of the scyphozoan medusa, Chrysaora quinquecirrha. Chesapeake Science 14 (3): 171–180.

    Article  Google Scholar 

  • Govoni, John J., and John E. Olney. 1991. Potential predation on fish eggs by the lobate ctenophore Mnemiopsis leidyi within and outside the Chesapeake Bay plume. Fishery Bulletin 89: 181–186.

    Google Scholar 

  • Grove, Michael, and Denise L. Breitburg. 2005. Growth and reproduction of gelatinous zooplankton exposed to low dissolved oxygen. Marine Ecology Progress Series 301: 185–198.

    Article  Google Scholar 

  • Hagy, James D., Walter R. Boynton, Carolyn W. Keefe, and Kathryn V. Wood. 2004. Hypoxia in Chesapeake Bay, 1950–2001: Long-term change in relation to nutrient loading and river flow. Estuaries 27 (4): 634–658.

    Article  CAS  Google Scholar 

  • Han, Chang-hoon, and Shin-ichi Uye. 2010. Combined effects of food supply and temperature on asexual reproduction and somatic growth of polyps of the common jellyfish Aurelia aurita s.l. Plankton and Benthos Research 5 (3): 98–105.

    Article  Google Scholar 

  • Harper, Donald E., and Randy J. Runnels. 1990. The occurrence of Rhopilema verrilli (Cnidaria: Scyphozoa: Rhizostomeae) on Galveston Island, Texas and a discussion on its distribution in U.S. waters. Northeast Gulf Science 11 (1): 19–27.

    Article  Google Scholar 

  • Holst, Sabine, and Gerhard Jarms. 2010. Effects of low salinity on settlement and strobilation of Scyphozoa (Cnidaria): Is the lion’s mane Cyanea capillata (L.) able to reproduce in the brackish Baltic Sea? Hydrobiologia 645 (1): 53–68.

    Article  CAS  Google Scholar 

  • Houde, E.D., J.C. Gamble, S.E. Dorsey, and J.H. Cowan Jr. 1994. Drifting mesocosms: The influence of gelatinous zooplankton on mortality of bay anchovy, Anchoa mitchilli, eggs and yolk-sac larvae. ICES Journal of Marine Science 51 (4): 383–394.

    Article  Google Scholar 

  • Jaspers, Cornelia, Lene Friis Møller, and Thomas Kiørboe. 2011. Salinity gradient of the Baltic Sea limits the reproduction and population expansion of the newly invaded comb jelly Mnemiopsis leidyi. PLoS One 6 (8): e24065.

    Article  CAS  Google Scholar 

  • Johnson, William S., Dennis M. Allen, M. Virginia Ogburn, and Stephen E. Stancyk. 1990. Short-term predation responses of adult bay anchovies Anchoa mitchilli to estuarine zooplankton availability. Oldendorf 64: 55–68.

    Article  Google Scholar 

  • Kimmel, David G., and Michael R. Roman. 2004. Long-term trends in mesozooplankton abundance in Chesapeake Bay, USA: Influence of freshwater input. Marine Ecology Progress Series 267: 71–83.

    Article  Google Scholar 

  • Kimmel, David G., Walter R. Boynton, and Michael R. Roman. 2012. Long-term decline in the calanoid copepod Acartia tonsa in Central Chesapeake Bay, USA: An indirect effect of eutrophication? Estuarine, Coastal and Shelf Science 101: 76–85.

    Article  Google Scholar 

  • Kolesar, Sarah E., Denise L. Breitburg, Jennifer E. Purcell, and Mary Beth Decker. 2010. Effects of hypoxia on Mnemiopsis leidyi, ichthyoplankton and copepods: Clearance rates and vertical habitat overlap. Marine Ecology Progress Series 411: 173–788.

    Article  CAS  Google Scholar 

  • Kremer, Patricia. 1976. Population dynamics and ecological energetics of a pulsed zooplankton predator, the ctenophore Mnemiopsis leidyi. In Estuarine Processes, ed. M.L. Wiley, vol. 1, 197–215. New York: Academic Press.

    Chapter  Google Scholar 

  • Kremer, Patricia. 1994. Patterns of abundance for Mnemiopsis in US coastal waters: A comparative overview. ICES Journal of Marine Science 51 (4): 347–354.

    Article  Google Scholar 

  • Liu, Wen-Cheng, Wen-Tseng Lo, Jennifer E. Purcell, and Hao-Hsien Chang. 2009. Effects of temperature and light intensity on asexual reproduction of the scyphozoan, Aurelia aurita (L.) in Taiwan. Hydrobiologia 616 (1): 247–258.

    Article  Google Scholar 

  • Mills, Claudia E. 2001. Jellyfish blooms: Are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451 (1/3): 55–68.

    Article  Google Scholar 

  • Murphy, Rebecca R., W. Michael Kemp, and William P. Ball. 2011. Long-term trends in Chesapeake Bay seasonal hypoxia, stratification, and nutrient loading. Estuaries and Coasts 34 (6): 1293–1309.

    Article  CAS  Google Scholar 

  • Najjar, Raymond G., Christopher R. Pyke, Mary Beth Adams, Denise Breitburg, Carl Hershner, Michael Kemp, Robert Howarth, Margaret R. Mulholland, Michael Paolisso, David Secor, Kevin Sellner, Denice Wardrop, and Robert Wood. 2010. Potential climate-change impacts on the Chesapeake Bay. Estuarine, Coastal and Shelf Science 86 (1): 1–20.

    Article  CAS  Google Scholar 

  • Oguz, Temel, Bettina Fach, and Baris Salihoglu. 2008. Invasion dynamics of the alien ctenophore Mnemiopsis leidyi and its impact on anchovy collapse in the Black Sea. Journal of Plankton Research 30 (12): 1385–1397.

    Article  Google Scholar 

  • Pörtner, H.O. 2001. Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88: 137–146.

    Article  Google Scholar 

  • Purcell, Jennifer E. 1992. Effects of predation by the scyphomedusan Chrysaora quinquecirrha on zooplankton populations in Chesapeake Bay. Marine Ecology Progress Series 87: 65–76.

    Article  Google Scholar 

  • Purcell, Jennifer E. 2005. Climate effects on formation of jellyfish and ctenophore blooms. Journal of the Marine Biological Association of the U.K. 85 (3): 461–476.

    Article  Google Scholar 

  • Purcell, Jennifer E., and James H. Cowan Jr. 1995. Predation by the scyphomedusan Chrysaora quinquecirrha on Mnemiopsis leidyi ctenophores. Marine Ecology Progress Series 128: 63–70.

    Article  Google Scholar 

  • Purcell, Jennifer E., and Mary Beth Decker. 2005. Effects of climate on relative predation by scyphomedusae and ctenophores on copepods in Chesapeake Bay during 1987-2000. Limnology and Oceanography 50 (1): 376–387.

    Article  Google Scholar 

  • Purcell, Jennifer E., Frances P. Cresswell, David G. Cargo, and Victor S. Kennedy. 1991. Differential ingestion and digestion of bivalve larvae by the scyphozoan Chrysaora quinquecirrha and the ctenophore Mnemiopsis leidyi. Biological Bulletin 180 (1): 103–111.

    Article  CAS  Google Scholar 

  • Purcell, Jennifer E., Jacques R. White, and Miachael R. Roman. 1994. Predation by gelatinous zooplankton and resource limitation as potential controls of Acartia tonsa copepod populations in Chesapeake Bay. Limnology and Oceanography 39 (2): 263–278.

    Article  Google Scholar 

  • Purcell, Jennifer E., Jacques R. White, David A. Nemazie, and David A. Wright. 1999. Temperature, salinity and food effects on asexual reproduction and abundance of the scyphozoan Chrysaora quinquecirrha. Marine Ecology Progress Series 180: 187–196.

    Article  Google Scholar 

  • Purcell, Jennifer E., Tamara A. Shiganova, Mary Beth Decker, and Edward D. Houde. 2001. The ctenophore Mnemiopsis in native and exotic habitats: U.S. estuaries versus the Black Sea basin. Hydrobiologia 451 (1/3): 145–176.

    Article  Google Scholar 

  • Purcell, Jennifer E., Shin-ichi Uye, and Wen-Tseng Lo. 2007. Anthropogenic causes of jellyfish blooms and their direct consequences for humans: A review. Marine Ecology Progress Series 350: 153–174.

    Article  Google Scholar 

  • Purcell, Jennifer E., Dacha Atienza, Verónica Fuentes, Alejandro Olariaga, Uxue Tilves, Chandler Colahan, and Josep-María Gili. 2012. Temperature effects on asexual reproduction rates of scyphozoan species from the Northwest Mediterranean Sea. Hydrobiologia 690 (1): 169–180.

    Article  CAS  Google Scholar 

  • Reeve, Michael R., Mary Ann Syms, and Patricia Kremer. 1989. Growth dynamics of a ctenophore (Mnemiopsis) in relation to variable food supply. I. Carbon biomass, feeding, egg production, growth and assimilation efficiency. Journal of Plankton Research 11 (3): 535–552.

    Article  Google Scholar 

  • Rice, Karen C., and John D. Jastram. 2015. Rising air and stream-water temperatures in Chesapeake Bay region, USA. Climatic Change 128 (1-2): 127–138.

    Article  CAS  Google Scholar 

  • Roohi, Aboulghasem, Ahmet E. Kideys, Ameneh Sajjadi, Abdolla Hashemian, Reza Pourgholam, Hasan Fazli, Ali Ganjian Khanari, and Elif Eker-Develi. 2010. Changes in biodiversity of phytoplankton, zooplankton, fishes and macrobenthos in the Southern Caspian Sea after the invasion of the ctenophore Mnemiopsis leidyi. Biological Invasions 12 (7): 2343–2361.

    Article  Google Scholar 

  • Sexton, Margaret A., Raleigh R. Hood, Judith Sarkodee-adoo, and Amanda M. Liss. 2010. Response of Chrysaora quinquecirrha medusae to low temperature. Hydrobiologia 645 (1): 125–133.

    Article  CAS  Google Scholar 

  • Sokolowski, Adam, Dominika Brulinska, Michal Olenycz, and Maciej Wolowicz. 2016. Does temperature and salinity limit asexual reproduction of Aurelia aurita polyps (Cnidaria: Scyphozoa) in the Gulf of Gdansk (southern Baltic Sea)? An experimental study. Hydrobiologia 773 (1): 49–62.

    Article  CAS  Google Scholar 

  • Southworth, Melissa, Roger Mann. 2016. The status of Virginia’s public oyster resource, 2015. Molluscan Ecology Program, Virginia Institute of Marine Science, Gloucester Point, Virginia. 50 pp.

  • Steinberg, Deborah K., Michael W. Lomas, and Joseph S. Cope. 2012. Long-term increase in mesozooplankton biomass in the Sargasso Sea: Linkage to climate and implications for food web dynamics and biogeochemical cycling. Global Biogeochemical Cycles 26: GB1004.

    Article  CAS  Google Scholar 

  • Stone, Joshua P., and Deborah K. Steinberg. 2018. Influence of top-down control in the plankton food web on vertical carbon flux: A case study in the Chesapeake Bay. Journal of Experimental Marine Biology and Ecology 498: 16–24.

    Article  Google Scholar 

  • Tarnowski, Mitchell. 2015. Maryland oyster population status report: 2014 fall survey. Maryland Department of Natural Resources Publ. No. 17-782015-769, Annapolis, 68 pp.

  • Thuesen, Erik V., Ladd D. Rutherford Jr., Patricia L. Brommer, Kurt Garrison, Magdalena A. Gutowska, and Trisha Towanda. 2005. Intragel oxygen promotes hypoxia tolerance of scyphomedusae. Journal of Experimental Biology 208 (13): 2475–2482.

    Article  Google Scholar 

  • Tuckey, Troy D., and Mary C. Fabrizio. 2013. Influence of survey design on fish assemblages: Implications from a study in Chesapeake Bay tributaries. Transactions of the American Fisheries Society 142 (4): 957–973.

    Article  Google Scholar 

  • van der Veer, H.W., and W. Oorthuysen. 1985. Abundance, growth and food demand of the scyphomedusa Aurelia aurita in the western Wadden Sea. Netherlands Journal of Sea Research 19: 28–44.

    Google Scholar 

  • Wang, Nan, Chaelun Li, Yi Liang, Yongqiang Shi, and Lu. Jingliang. 2015. Prey concentration and temperature effect on budding and strobilation of Aurelia sp. 1 polyps. Hydrobiologia 754 (1): 125–134.

    Article  CAS  Google Scholar 

  • Wright, David A., and Jennifer E. Purcell. 1997. Effect of salinity on ionic shifts in mesohaline scyphomedusae, Chrysaora quinquecirrha. Biological Bulletin 192 (2): 332–339.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the numerous technicians and crew of the Virginia Institute of Marine Science Juvenile Fish Trawl Survey and the Chesapeake Bay Program Mesozooplankton Survey for the many years of tireless sampling. Special thanks to Troy Tuckey, Wendy Lowery, Ben Marcek, and Cassidy Peterson for assistance with analysis of the VIMS Juvenile Fish Trawl Survey data.

Funding

This research was funded by Virginia Sea Grant (V718500) to D.K.S. and J.P.S. and grants from the Virginia Marine Resources Commission and National Oceanic and Atmospheric Administration—Chesapeake Bay Office to M.C.F. This is contribution number 3780 of the Virginia Institute of Marine Science, College of William & Mary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua P. Stone.

Additional information

Communicated by Wim J. Kimmerer

Electronic Supplementary Material

ESM 1

Supp. Fig. 1 Distribution of GZ biovolume and presence across salinity and temperature gradients in the VIMS dataset (2000–2012, in lower Chesapeake Bay). a Percent presence of Aurelia aurita, b percent presence of Cyanea capillata, and c percent presence of Rhopilema verrilli. “Percent presence” is the percentage of all tows that had a particular taxon present. Stars represent the mean center of distribution weighted by biovolume index or percent presence. (PNG 226 kb)

High-resolution image (TIF 46411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stone, J.P., Steinberg, D.K. & Fabrizio, M.C. Long-Term Changes in Gelatinous Zooplankton in Chesapeake Bay, USA: Environmental Controls and Interspecific Interactions. Estuaries and Coasts 42, 513–527 (2019). https://doi.org/10.1007/s12237-018-0459-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-018-0459-7

Keywords

Navigation