Skip to main content

Advertisement

Log in

Hard Structures for Coastal Protection, Towards Greener Designs

  • Special Issue: Integrating Ecosystems and Coastal Engineering Practice
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Over recent years, many coastal engineering projects have employed the use of soft solutions as these are generally less environmentally damaging than hard solutions. However, in some cases, local conditions hinder the use of soft solutions, meaning that hard solutions have to be adopted or, sometimes, a combination of hard and soft measures is seen as optimal. This research reviews the use of hard coastal structures on the foreshore (groynes, breakwaters and jetties) and onshore (seawalls and dikes). The purpose, functioning and local conditions for which these structures are most suitable are outlined. A description is provided on the negative effects that these structures may have on morphological, hydrodynamic and ecological conditions. To reduce or mitigate these negative impacts, or to create new ecosystem services, the following nature-based adaptations are proposed and discussed: (1) applying soft solutions complementary to hard solutions, (2) mitigating morphological and hydrodynamic changes and (3) ecologically enhancing hard coastal structures. The selection and also the success of these potential adaptations are highly dependent on local conditions, such as hydrodynamic forcing, spatial requirements and socioeconomic factors. The overview provided in this paper aims to offer an interdisciplinary understanding, by giving general guidance on which type of solution is suitable for given characteristics, taking into consideration all aspects that are key for environmentally sensitive coastal designs. Overall, this study aims to provide guidance at the interdisciplinary design stage of nature-based coastal defence structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Airoldi, L., X. Turon, S. Perkol-Finkel, and M. Rius. 2015. Corridors for aliens but not for natives: Effects of marine urban sprawl at a regional scale. Diversity and Distributions. 21 (7): 755–768. https://doi.org/10.1111/ddi.12301.

    Article  Google Scholar 

  • Barber, T. 1999. Reef balls TM: An advanced technique to mimic natural reef systems using designed artificial reefs. In Abstracts of the 7th Scientific Conference on Artificial Reefs and Related Habitats, October, 1999, in San Remo, Italy.

  • Bishop, M.J., M. Mayer-Pinto, L. Airoldi, L.B. Firth, R.L. Morris, L.H.L. Loke, S.J. Hawkins, L.A. Naylor, R.A. Coleman, S.Y. Chee, and K.A. Dafforn. 2017. Effects of ocean sprawl on ecological connectivity: Impacts and solutions. Journal of Experimental Marine Biology and Ecology. 492: 7–30. https://doi.org/10.1016/j.jembe.2017.01.021.

    Article  Google Scholar 

  • BMU. 2006. Integriertes Küstenzonenmanagement in Deutschland. Nationale Strategie für ein integriertes Küstenzonenmanagement (Bestandsaufnahme, Stand 2006). in German.

  • Borsje, B.W., B.K. van Wesenbeeck, F. Dekker, P. Paalvast, T.J. Bouma, M.M. van Katwijk, and M.B. de Vries. 2011. How ecological engineering can serve in coastal protection. Ecological Engineering. 37 (2): 113–122. https://doi.org/10.1016/j.ecoleng.2010.11.027.

    Article  Google Scholar 

  • Bouma, T.J., M.B. De Vries, E. Low, G. Peralta, I.C. Tánczos, J. van de Koppel, and P.M.J. Herman. 2005. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 86 (8): 2187–2199. https://doi.org/10.1890/04-1588.

    Article  Google Scholar 

  • Bouma, T.J., M.B. De Vries, and P.M.J. Herman. 2010. Comparing ecosystem engineering efficiency of two plant species with contrasting growth strategies. Ecology 91 (9): 2696–2704. https://doi.org/10.1890/09-0690.1.

    Article  CAS  Google Scholar 

  • Bouma, T.J., J. van Belzen, T. Balke, Z. Zhu, L. Airoldi, A.J. Blight, A.J. Davies, C. Galvan, S.J. Hawkins, S.P.G. Hoggart, J.L. Lara, I.J. Losada, M. Maza, B. Ondiviela, M.W. Skov, E.M. Strain, R.C. Thompson, S. Yang, B. Zanuttigh, L. Zhang, and P.M.J. Herman. 2014. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & steps to take. Coastal Engineering 87: 147–157. https://doi.org/10.1016/j.coastaleng.2013.11.014.

    Article  Google Scholar 

  • Bouma, T.J., J. van Belzen, T. Balke, J. van Dalen, P. Klaassen, A.M. Hartog, D.P. Callaghan, Z. Hu, M.J.F. Stive, S. Temmerman, and P.M.J. Herman. 2016. Short-term mudflat dynamics drive long-term cyclic salt marsh dynamics. Limnology and Oceanography 61 (6): 2261–2275. https://doi.org/10.1002/lno.10374.

    Article  Google Scholar 

  • Bradley, K., and C. Houser. 2009. Relative velocity of seagrass blades: Implications for wave attenuation in low-energy environments. Journal of Geophysical Research 114 (F1): F01004. https://doi.org/10.1029/2007JF000951.

    Article  Google Scholar 

  • Bridges, T.S., P.W. Wagner, K.A. Burks-Copes, M.E. Bates, Z. Collier, C.J. Fischenich, J.Z. Gailani, L.D. Leuck, C.D. Piercy, J.D. Rosati, E.J. Russo, D.J. Shafer, B.C. Suedel, E.A. Vuxton, and T. V Wamsley. 2015. Use of natural and nature-based features (NNBF) for coastal resilience. ERDC SR-15-1.

  • Britton, J.C., and B. Morton. 1989. Shore ecology of the Gulf of Mexico. University of Texas Press.

  • Browne, M.A., and M.G. Chapman. 2011. Ecologically informed engineering reduces loss of intertidal biodiversity on artificial shorelines. Environmental Science & Technology. 45 (19): 8204–8207. https://doi.org/10.1021/es201924b.

    Article  CAS  Google Scholar 

  • Bulleri, F., M. Abbiati, and L. Airoldi. 2006. The colonisation of human-made structures by the invasive alga Codium fragile ssp. tomentosoides in the North Adriatic Sea (NE Mediterranean). Hydrobiologia 555 (1): 263–269. https://doi.org/10.1007/s10750-005-1122-4.

    Article  Google Scholar 

  • Callaghan, D.P., T.J. Bouma, P. Klaassen, D. van der Wal, M.J.F. Stive, and P.M.J. Herman. 2010. Hydrodynamic forcing on salt-marsh development: Distinguishing the relative importance of waves and tidal flows. Estuarine, Coastal and Shelf Science 89 (1): 73–88. https://doi.org/10.1016/j.ecss.2010.05.013.

    Article  Google Scholar 

  • Cao, H., Z. Zhu, T. Balke, L. Zhang, and T.J. Bouma. 2018. Effects of sediment disturbance regimes on Spartina seedling establishment: Implications for salt marsh creation and restoration. Limnology and Oceanography 63 (2): 647–659. https://doi.org/10.1002/lno.10657.

    Article  Google Scholar 

  • Capobianco, M., and M.J.F. Stive. 2000. Soft intervention technology as a tool for integrated coastal zone management. Journal of Coastal Conservation 6 (1): 33–40. https://doi.org/10.1007/BF02730465.

    Article  Google Scholar 

  • Chapman, M.G., and D.J. Blockley. 2009. Engineering novel habitats on urban infrastructure to increase intertidal biodiversity. Oecologia 161 (3): 625–635. https://doi.org/10.1007/s00442-009-1393-y.

    Article  CAS  Google Scholar 

  • Chapman, M.G., and A.J. Underwood. 2011. Evaluation of ecological engineering of “armoured” shorelines to improve their value as habitat. Journal of Experimental Marine Biology and Ecology 400 (1-2): 302–313. https://doi.org/10.1016/j.jembe.2011.02.025.

    Article  Google Scholar 

  • Cheong, S., B. Silliman, P.P. Wong, B. van Wesenbeeck, C. Kim, and G. Guannel. 2013. Coastal adaptation with ecological engineering. Nature Climate Change 3 (9): 787–791. https://doi.org/10.1038/nclimate1854.

    Article  Google Scholar 

  • Christianen, M.J.A., J. van Belzen, P.M.J. Herman, M.M. van Katwijk, L.P.M. Lamers, P.J.M. van Leent, and T.J. Bouma. 2013. Low-canopy seagrass beds still provide important coastal protection services. PLoS One 8 (5): e62413. https://doi.org/10.1371/journal.pone.0062413.

    Article  CAS  Google Scholar 

  • CIRIA. 2007. The rock manual: The use of rock in hydraulic engineering. London: CIRIA.

    Google Scholar 

  • CIRIA. 2013. The international levee handbook. London: CIRIA (CIRIA, C731).

    Google Scholar 

  • Coastal Engineering Research Centre (CERC). 1984. Shore Protection Manual (SPM). 4th ed. Washington, DC: U. S. Army Engineer Waterways Experiment Station, U. S. Government Printing Office.

    Google Scholar 

  • COM. 2002. Recommendation of the European Parliament and of the Council of 30 May 2002 concerning the implementation of Integrated Coastal Zone Management in Europe. (2002/413/EC) Official Journal of the European Communities L 148/24, 662002.

  • Coombes, M.A., E.C. La Marca, L.A. Naylor, and R.C. Thompson. 2015. Getting into the groove: Opportunities to enhance the ecological value of hard coastal infrastructure using fine-scale surface textures. Ecological Engineering 77: 314–323. https://doi.org/10.1016/j.ecoleng.2015.01.032.

    Article  Google Scholar 

  • Costanza, R., R. D’Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, R.V. O’Neill, J. Paruelo, R.G. Raskin, P. Sutton, and M. van den Belt. 1997. The value of the world’s ecosystem services and natural capital. Nature 387 (6630): 253–260. https://doi.org/10.1038/387253a0.

    Article  CAS  Google Scholar 

  • David, G.C., N. Schulz, and T. Schlurmann. 2016. Ecosystem-based disaster risk reduction and adaptation in practice. Cham: Springer International Publishing.

    Google Scholar 

  • De Vriend, H.J., and M. Van Koningsveld. 2012. Building with nature: Thinking, acting and interacting differently. Dordrecht: EcoShape, Building with Nature.

    Google Scholar 

  • De Vriend, H., M. van Koningsveld, and S. Aarninkhof. 2014. ‘Building with nature’: The new Dutch approach to coastal and river works. Proceedings of the Institution of Civil Engineers - Civil Engineering 167 (1): 18–24. https://doi.org/10.1680/cien.13.00003.

    Article  Google Scholar 

  • De Vries, M., T.J. Bouma, M. van Katwijk, and B.W. Borsje. 2007. Biobouwers van de Kust. Technical report (Z4158). Delft: WL | Delft Hydraulics.

    Google Scholar 

  • Dean, R.G. 1987. Coastal armouring: Effects, principles and mitigation. In 20th international conference on coastal engineering 1986, Taipei, Taiwan. pp 1843–1857.

  • DEFRA. 2006. Shoreline management plan guidance. Volume 1: Aims and requirements. London: Department for Environment, Food and Rural Affairs.

    Google Scholar 

  • Dijkema, K.S. 1987. Changes in salt-marsh area in the Netherlands Wadden Sea after 1600. In Vegetation between land and sea, ed. A.H.L. Huiskes, C.W.P.M. Blom, and J. Rozema, 42–49. Dordrecht: Dr W Junk Publishers. https://doi.org/10.1007/978-94-009-4065-9_4.

    Chapter  Google Scholar 

  • Douglass, S.L., and B.H. Pickel. 1999. The tide doesn’t go out anymore: The effect of bulkheads on urban bay shorelines. Shore & Beach 67 (2&3): 19–25.

    Google Scholar 

  • Dugan, J.E., D.M. Hubbard, I.F. Rodil, D.L. Revell, and S. Schroeter. 2008. Ecological effects of coastal armoring on sandy beaches. Marine Ecology 29 (s1): 160–170. https://doi.org/10.1111/j.1439-0485.2008.00231.x.

    Article  Google Scholar 

  • Dugan, J.E., L. Airoldi, M.G. Chapman, S.J. Walker, and T. Schlacher. 2011. Estuarine and coastal structures: Environmental effects, a focus on shore and nearshore structures. In Treatise on Estuarine and Coastal Science. Elsevier, pp 17–41.

  • EAK. 2002. Empfehlungen für Küstenschutzwerke. Korrigierte Ausgabe 2007. In Kuratorium für Forschung im Küsteningenieurwesen (KFKI), ed. Die Küste, vol. 65. Karlsruhe: Bundesanstalt für Wasserbau (BAW).

    Google Scholar 

  • Erftemeijer, P.L.A., and R.R. Lewis III. 2006. Environmental impacts of dredging on seagrasses: A review. Marine Pollution Bulletin 52 (12): 1553–1572. https://doi.org/10.1016/j.marpolbul.2006.09.006.

    Article  CAS  Google Scholar 

  • Erftemeijer, P.L.A., B. Riegl, B.W. Hoeksema, and P.A. Todd. 2012. Environmental impacts of dredging and other sediment disturbances on corals: A review. Marine Pollution Bulletin 64 (9): 1737–1765. https://doi.org/10.1016/j.marpolbul.2012.05.008.

    Article  CAS  Google Scholar 

  • European Commission. 2015. Towards an EU Research and Innovation policy agenda for nature-based solutions & re-naturing cities. Final report of the Horizon 2020.

  • EurOtop. 2018. Manual on wave overtopping of sea defences and related structures. An overtopping manual largely based on European research, but for worldwide application. In ed. J. W. van der Meer, N. W. H. Allsop, T. Bruce, J. de Rouck, A. Kortenhaus, T. Pullen, H. Schüttrumpf, P. Troch and B. Zannutigh. Available online at www.overtopping-manual.com.

  • Evans, A.J., L.B. Firth, S.J. Hawkins, E.S. Morris, H. Goudge, and P.J. Moore. 2016. Drill-cored rock pools: An effective method of ecological enhancement on artificial structures. Marine and Freshwater Research 67 (1): 123–130. https://doi.org/10.1071/MF14244.

    Article  Google Scholar 

  • Evans, A.J., B. Garrod, L.B. Firth, S.J. Hawkins, E.S. Morris-Webb, H. Goudge, and P.J. Moore. 2017. Stakeholder priorities for multi-functional coastal defence developments and steps to effective implementation. Marine Policy 75: 143–155. https://doi.org/10.1016/j.marpol.2016.10.006.

    Article  Google Scholar 

  • Feagin, R.A., N. Mukherjee, K. Shanker, A.H. Baird, J. Cinner, A.M. Kerr, N. Koedam, A. Sridhar, R. Arthur, L.P. Jayatissa, D. Lo Seen, M. Menon, S. Rodriguez, M. Shamsuddoha, and F. Dahdouh-Guebas. 2010. Shelter from the storm? Use and misuse of coastal vegetation bioshields for managing natural disasters. Conservation Letters 3 (1): 1–11. https://doi.org/10.1111/j.1755-263X.2009.00087.x.

    Article  Google Scholar 

  • Ferrario, F., M.W. Beck, C.D. Storlazzi, F. Micheli, C.C. Shepard, and L. Airoldi. 2014. The effectiveness of coral reefs for coastal hazard risk reduction and adaptation. Nature Communications 5 (1): 3794. https://doi.org/10.1038/ncomms4794.

    Article  CAS  Google Scholar 

  • Firth, L.B., R.C. Thompson, and S.J. Hawkins. 2012. Eco-engineering of artificial coastal structures to enhance biodiversity: An illustrated guide.

  • Firth, L.B., N. Mieszkowska, R.C. Thompson, and S.J. Hawkins. 2013. Climate change and adaptational impacts in coastal systems: The case of sea defences. Environmental Science: Processes & Impacts 15 (9): 1665. https://doi.org/10.1039/c3em00313b.

    Article  CAS  Google Scholar 

  • Firth, L.B., R.C. Thompson, K. Bohn, M. Abbiati, L. Airoldi, T.J. Bouma, F. Bozzeda, V.U. Ceccherelli, M.A. Colangelo, A. Evans, F. Ferrario, M.E. Hanley, H. Hinz, S.P.G. Hoggart, J.E. Jackson, P. Moore, E.H. Morgan, S. Perkol-Finkel, M.W. Skov, E.M. Strain, J. van Belzen, and S.J. Hawkins. 2014. Between a rock and a hard place: Environmental and engineering considerations when designing coastal defence structures. Coastal Engineering 87: 122–135. https://doi.org/10.1016/j.coastaleng.2013.10.015.

    Article  Google Scholar 

  • Firth, L.B., A.M. Knights, D. Bridger, A.J. Evans, N. Mieszkowska, P.J. Moore, N.E. O’Connor, E.V. Sheehan, R.C. Thompson, and S.J. Hawkins. 2016a. Ocean sprawl: Challenges and opportunities for biodiversity Management in a Changing World Introduction: Context and background. An Annual Review 54: 193–269.

    Google Scholar 

  • Firth, L.B., K.A. Browne, A.M. Knights, S.J. Hawkins, and R. Nash. 2016b. Eco-engineered rock pools: A concrete solution to biodiversity loss and urban sprawl in the marine environment. Environmental Research Letters 11 (9): 094015. https://doi.org/10.1088/1748-9326/11/9/094015.

    Article  Google Scholar 

  • Fonseca, M.S., and J.A. Cahalan. 1992. A preliminary evaluation of wave attenuation by four species of seagrass. Estuarine, Coastal and Shelf Science 35 (6): 565–576. https://doi.org/10.1016/S0272-7714(05)80039-3.

    Article  Google Scholar 

  • Gambi, M., A. Nowell, and P. Jumars. 1990. Flume observations on flow dynamics in Zostera marina (eelgrass) beds. Marine Ecology Progress Series 61: 159–169. https://doi.org/10.3354/meps061159.

    Article  Google Scholar 

  • Gillis, L., T. Bouma, C. Jones, M. van Katwijk, I. Nagelkerken, C. Jeuken, P. Herman, and A. Ziegler. 2014. Potential for landscape-scale positive interactions among tropical marine ecosystems. Marine Ecology Progress Series 503: 289–303. https://doi.org/10.3354/meps10716.

    Article  Google Scholar 

  • Glasby, T.M., S.D. Connell, M.G. Holloway, and C.L. Hewitt. 2007. Nonindigenous biota on artificial structures: Could habitat creation facilitate biological invasions? Marine Biology 151 (3): 887–895. https://doi.org/10.1007/s00227-006-0552-5.

    Article  Google Scholar 

  • Griggs, G. 2010.The effects of armoring shorelines—The California experience. In Puget Sound shorelines and the impacts of armoring - Proceedings of a State of the Science Workshop, May 2009. pp 77–84.

  • Hall, A.E., R.J.H. Herbert, J.R. Britton, and S.L. Hull. 2018. Ecological enhancement techniques to improve habitat heterogeneity on coastal defence structures. Estuarine, Coastal and Shelf Science 210: 68–78. https://doi.org/10.1016/j.ecss.2018.05.025.

    Article  Google Scholar 

  • Hamm, L., M. Capobianco, H. Dette, A. Lechuga, R. Spanhoff, and M.J. Stive. 2002. A summary of European experience with shore nourishment. Coastal Engineering 47 (2): 237–264. https://doi.org/10.1016/S0378-3839(02)00127-8.

    Article  Google Scholar 

  • Henderson, J., and J. O’Neil. 2003. Economic Values Associated with Construction of Oyster Reefs by the Corps of Engineers. ERDC TN-EMRRP-ER-01:

  • Hsu, J.R.C., and R. Silvester. 1990. Accretion behind single offshore breakwater. Journal of Waterway, Port, Coastal, and Ocean Engineering 116 (3): 362–380. https://doi.org/10.1061/(ASCE)0733-950X(1990)116:3(362).

    Article  Google Scholar 

  • ICES. 2016. Effects of extraction of marine sediments on the marine environment 2005–2011. ICES Cooperative Research Report No. 330. 260 pp.

  • IUCN. 2016. Nature-based solutions to address global societal challenges. In eds. Cohen-Shacham, E Walters, G Janzen, C Maginnis, S. https://doi.org/10.2305/IUCN.CH.2016.13.en.

  • Jackson, N.L., and K.F. Nordstrom. 2011. Aeolian sediment transport and landforms in managed coastal systems: A review. Aeolian Research 3 (2): 181–196. https://doi.org/10.1016/j.aeolia.2011.03.011.

    Article  Google Scholar 

  • Keith, S.A., R.J.H. Herbert, P.A. Norton, S.J. Hawkins, and A.C. Newton. 2011. Individualistic species limitations of climate-induced range expansions generated by meso-scale dispersal barriers. Diversity and Distributions 17 (2): 275–286. https://doi.org/10.1111/j.1472-4642.2010.00734.x.

    Article  Google Scholar 

  • Knutson, P.L., R.A. Brochu, W.N. Seelig, and M. Inskeep. 1982. Wave damping in Spartina alterniflora marshes. Wetlands 2 (1): 87–104. https://doi.org/10.1007/BF03160548.

    Article  Google Scholar 

  • Koch, E.W., E.B. Barbier, B.R. Silliman, D.J. Reed, G.M. Perillo, S.D. Hacker, E.F. Granek, J.H. Primavera, N. Muthiga, S. Polasky, B.S. Halpern, C.J. Kennedy, C.V. Kappel, and E. Wolanski. 2009. Non-linearity in ecosystem services: Temporal and spatial variability in coastal protection. Frontiers in Ecology and the Environment 7 (1): 29–37. https://doi.org/10.1890/080126.

    Article  Google Scholar 

  • Kraus, N.C. 1988. The effects of seawalls on the beach: An extended literature review. Journal of Coastal Research. 1–28. https://doi.org/10.2307/25735349.

  • Kraus, N.C., and W.G. McDougal. 1996. The effects of seawalls on the beach: Part I, An Updated Literature Review. Journal of Coastal Research 12: 691–701.

    Google Scholar 

  • Lillycrop, W.J., and S.A. Hughes. 1993. Scour hole problems experienced by the Corps of Engineers; Data Presentation and Summary. CERC-93-2.

  • Losada, M.A. 1990. Recent development in the design of mound breakwaters. In Chapter 21, ed. Herbich, J. Handbook of Coastal and Ocean Engineering, Vol. 1. Gulf Publishing.

  • Lucrezi, S., T.A. Schlacher, and W. Robinson. 2010. Can storms and shore armouring exert additive effectson sandy-beach habitats and biota? Marine and Freshwater Research 61 (9): 951. https://doi.org/10.1071/MF09259.

    Article  CAS  Google Scholar 

  • Martins, G.M., R.C. Thompson, A.I. Neto, S.J. Hawkins, and S.R. Jenkins. 2010. Enhancing stocks of the exploited limpet Patella candei d’Orbigny via modifications in coastal engineering. Biological Conservation 143 (1): 203–211. https://doi.org/10.1016/j.biocon.2009.10.004.

    Article  Google Scholar 

  • McIvor, A.L., I. Möller, T. Spencer, and M. Spalding. 2012. Reduction of wind and swell waves by mangroves. Natural coastal protection series: Report 1 Cambridge Coastal Research Unit Working Paper 40 Published by The Nature Conservancy and Wetlands International, 27 pages, ISSN 2050-7941.

  • Meyer, M., and A. Emersleben. 2009. Einsatz von Geozellen im Deich- und Wasserbau. In 3. Symposium “Sicherung von Dämmen, Deichen und Stauanlagen”, 431–443. Institut für Geotechnik der Universität Siegen.

  • Meyer, D.L., E.C. Townsend, and G.W. Thayer. 1997. Stabilization and Erosion control value of oyster cultch for intertidal marsh. Restoration Ecology 5 (1): 93–99. https://doi.org/10.1046/j.1526-100X.1997.09710.x.

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (MEA). 2005. Ecosystems and human well-being: Synthesis. Washington: Island Press.

    Google Scholar 

  • Mohamed, T.A., N.A. Alias, A.H. Ghazali, and M.S. Jaafar. 2006. Evaluation of environmental and hydraulic performance of bio-composite revetment blocks. American Journal of Environmental Sciences 2 (4): 129–134. https://doi.org/10.3844/ajessp.2006.129.134.

    Article  Google Scholar 

  • Möller, I., M. Kudella, F. Rupprecht, T. Spencer, M. Paul, B.K. van Wesenbeeck, G. Wolters, K. Jensen, T.J. Bouma, M. Miranda-Lange, and S. Schimmels. 2014. Wave attenuation over coastal salt marshes under storm surge conditions. Nature Geoscience 7 (10): 727–731. https://doi.org/10.1038/ngeo2251.

    Article  CAS  Google Scholar 

  • Morris, R.L., T.M. Konlechner, M. Ghisalberti, and S.E. Swearer. 2018. From grey to green: Efficacy of eco-engineering solutions for nature-based coastal defence. Global Change Biology 24 (5): 1827–1842. https://doi.org/10.1111/gcb.14063.

    Article  Google Scholar 

  • Mory, M., and L. Hamm. 1997. Wave height, setup and currents around a detached breakwater submitted to regular or random wave forcing. Coastal Engineering 31 (1-4): 77–96. https://doi.org/10.1016/S0378-3839(96)00053-1.

    Article  Google Scholar 

  • Moschella, P.S., M. Abbiati, P. Åberg, L. Airoldi, J.M. Anderson, F. Bacchiocchi, F. Bulleri, G.E. Dinesen, M. Frost, E. Gacia, L. Granhag, P.R. Jonsson, M.P. Satta, A. Sundelöf, R.C. Thompson, and S.J. Hawkins. 2005. Low-crested coastal defence structures as artificial habitats for marine life: Using ecological criteria in design. Coastal Engineering 52 (10-11): 1053–1071. https://doi.org/10.1016/j.coastaleng.2005.09.014.

    Article  Google Scholar 

  • Murray, J.M., A. Meadows, and P.S. Meadows. 2002. Biogeomorphological implications of microscale interactions between sediment geotechnics and marine benthos: A review. Geomorphology 47 (1): 15–30. https://doi.org/10.1016/S0169-555X(02)00138-1.

    Article  Google Scholar 

  • Narayan, S., M.W. Beck, B.G. Reguero, I.J. Losada, B. van Wesenbeeck, N. Pontee, J.N. Sanchirico, J.C. Ingram, G.-M. Lange, and K.A. Burks-Copes. 2016. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS One 11 (5): e0154735. https://doi.org/10.1371/journal.pone.0154735.

    Article  CAS  Google Scholar 

  • Naylor, L.A., O. Venn, M. Coombes, J. Jackson, and R.C. Thompson. 2011. Including ecological enhancements in the planning, design and construction of hard coastal structures: A process guide. Report to the Environment Agency (PID 110461). 66 pp.

  • Naylor, L.A., M.A. Coombes, O. Venn, S.D. Roast, and R.C. Thompson. 2012. Facilitating ecological enhancement of coastal infrastructure: The role of policy, people and planning. Environmental Science & Policy 22: 36–46. https://doi.org/10.1016/j.envsci.2012.05.002.

    Article  Google Scholar 

  • Naylor, L.A., M. MacArthur, S. Hampshire, K. Bostock, M.A. Coombes, J.D. Hansom, R. Byrne, and T. Folland. 2017. Rock armour for birds and their prey: Ecological enhancement of coastal engineering. Proceedings of the Institution of Civil Engineers - Maritime Engineering 170 (2): 67–82. https://doi.org/10.1680/jmaen.2016.28.

    Article  Google Scholar 

  • Nesshöver, C., T. Assmuth, K.N. Irvine, G.M. Rusch, K.A. Waylen, B. Delbaere, D. Haase, L. Jones-Walters, H. Keune, E. Kovacs, K. Krauze, M. Külvik, F. Rey, J. van Dijk, O.I. Vistad, M.E. Wilkinson, and H. Wittmer. 2017. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Science of The Total Environment 579: 1215–1227. https://doi.org/10.1016/j.scitotenv.2016.11.106.

    Article  CAS  Google Scholar 

  • Neumann, B., A.T. Vafeidis, J. Zimmermann, and R.J. Nicholls. 2015. Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS One 10 (3): e0118571. https://doi.org/10.1371/journal.pone.0118571.

    Article  CAS  Google Scholar 

  • Nienhuis, P.H., and R.D. Gulati. 2002. Ecological restoration of aquatic and semi-aquatic ecosystems in the Netherlands: An introduction. Springer, Netherlands.

  • Nordstrom, K.F. 2014. Living with shore protection structures: A review. Estuarine, Coastal and Shelf Science 150: 11–23. https://doi.org/10.1016/j.ecss.2013.11.003.

    Article  Google Scholar 

  • Pan, Y., L. Li, F. Amini, and C. Kuang. 2015. Overtopping erosion and failure mechanism of earthen levee strengthened by vegetated HPTRM system. Ocean Engineering 96: 139–148. https://doi.org/10.1016/j.oceaneng.2014.12.012.

    Article  Google Scholar 

  • PIANC. 2011. Working with Nature- PIANC Position Paper. https://www.pianc.org/workingwithnature.php. Accessed 4 May 2018.

  • Pilarczyk, K.W. 2003. Design of low-crested (submerged) structures – An overview –. In 6th international conference on coastal and port engineering in developing countries, Colombo, Sri Lanka.

  • Pilarczyk, K. 2017. Dikes and revetments: Design. Maintenance and Safety Assessment, Routledge ISBN: 978-90-5410-455-1.

  • Pilarczyk, K.W., and R.B. Zeidler. 1996. Offshore breakwaters and shore evolution control. Rotterdam: Balkema ISBN: 90-5410-627-1.

    Google Scholar 

  • Pontee, N., S. Narayan, M.W. Beck, and A.H. Hosking. 2016. Nature-based solutions: Lessons from around the world. Proceedings of the Institution of Civil Engineers - Maritime Engineering 169 (1): 29–36. https://doi.org/10.1680/jmaen.15.00027.

    Article  Google Scholar 

  • Ranasinghe, R., and I.L. Turner. 2006. Shoreline response to submerged structures: A review. Coastal Engineering 53 (1): 65–79. https://doi.org/10.1016/j.coastaleng.2005.08.003.

    Article  Google Scholar 

  • ROM. 2009. Recomendaciones para obras maritimas, Serie I. Obras de abrigo frente a las oscilaciones de mar. Puertos del Estado, Ministerio de Fomento, Gobierno de España.

  • SAGE. 2015. Natural and structural measures for shoreline stabilization. http://sagecoast.org/docs/SAGE_LivingShorelineBrochure_Print.pdf. Accessed 21 May 2018.

  • Salgado, K., and M.L. Martinez. 2017. Is ecosystem-based coastal defense a realistic alternative? Exploring the evidence. Journal of Coastal Conservation 21 (6): 837–848. https://doi.org/10.1007/s11852-017-0545-1.

    Article  Google Scholar 

  • Scheres, B., and H. Schüttrumpf. 2017. Conception of ecologically valuable sea dike systems. In In Mediterranean Coastal Foundation. The thirteenth international MEDCOAST congress on coastal and marine sciences, engineering, management and conservation. MEDCOAST 17, 893–904. Mellieha, Malta.

  • Schmitt, K., T. Albers, T.T. Pham, and S.C. Dinh. 2013. Site-specific and integrated adaptation to climate change in the coastal mangrove zone of Soc Trang Province, Viet Nam. Journal of Coastal Conservation 17 (3): 545–558. https://doi.org/10.1007/s11852-013-0253-4.

    Article  Google Scholar 

  • Schüttrumpf, H. 2008. Sea Dikes in Germany. In Kuratorium für Forschung im Küsteningenieurwesen (KFKI). In ed. Die Küste, 189–199. 74 Heide i Holstein: Boyens Medien GmbH & Co KG.

  • Scott, T., M. Austin, G. Masselink, and P. Russell. 2016. Dynamics of rip currents associated with groynes — Field measurements, modelling and implications for beach safety. Coastal Engineering 107: 53–69. https://doi.org/10.1016/j.coastaleng.2015.09.013.

    Article  Google Scholar 

  • Scyphers, S.B., S.P. Powers, K.L. Heck, and D. Byron. 2011. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS One 6 (8): e22396. https://doi.org/10.1371/journal.pone.0022396.

    Article  CAS  Google Scholar 

  • Sherrard, T.R.W., S.J. Hawkins, P. Barfield, M. Kitou, S. Bray, and P.E. Osborne. 2016. Hidden biodiversity in cryptic habitats provided by porous coastal defence structures. Coastal Engineering 118: 12–20. https://doi.org/10.1016/j.coastaleng.2016.08.005.

    Article  Google Scholar 

  • Shi, Z.H., N.F. Fang, F.Z. Wu, L. Wang, B.J. Yue, and G.L. Wu. 2012. Soil erosion processes and sediment sorting associated with transport mechanisms on steep slopes. Journal of Hydrology 454–455: 123–130. https://doi.org/10.1016/j.jhydrol.2012.06.004.

    Article  Google Scholar 

  • Silva, R., D. Lithgow, L.S. Esteves, M.L. Martínez, P. Moreno-Casasola, R. Martell, P. Pereira, E. Mendoza, A. Campos-Cascaredo, P. Winckler Grez, A.F. Osorio, J.D. Osorio-Cano, and G.D. Rivillas. 2017. Coastal risk mitigation by green infrastructure in Latin America. Proceedings of the Institution of Civil Engineers - Maritime Engineering 170 (2): 39–54. https://doi.org/10.1680/jmaen.2016.13.

    Article  Google Scholar 

  • Strain, E.M.A., C. Olabarria, M. Mayer-Pinto, V. Cumbo, R.L. Morris, A.B. Bugnot, K.A. Dafforn, E. Heery, L.B. Firth, P.R. Brooks, and M.J. Bishop. 2018. Eco-engineering urban infrastructure for marine and coastal biodiversity: Which interventions have the greatest ecological benefit? Journal of Applied Ecology 55 (1): 426–441. https://doi.org/10.1111/1365-2664.12961.

    Article  Google Scholar 

  • Suh, K., and R.A. Dalrymple. 1987. Offshore breakwaters in laboratory and field. Journal of Waterway, Port, Coastal, and Ocean Engineering 113 (2): 105–121. https://doi.org/10.1061/(ASCE)0733-950X(1987)113:2(105).

    Article  Google Scholar 

  • Sutton-Grier, A.E., K. Wowk, and H. Bamford. 2015. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environmental Science & Policy 51: 137–148. https://doi.org/10.1016/j.envsci.2015.04.006.

    Article  Google Scholar 

  • Suzuki, T., M. Zijlema, B. Burger, M.C. Meijer, and S. Narayan. 2012. Wave dissipation by vegetation with layer schematization in SWAN. Coastal Engineering 59 (1): 64–71. https://doi.org/10.1016/j.coastaleng.2011.07.006.

    Article  Google Scholar 

  • Temmerman, S., P. Meire, T.J. Bouma, P.M.J. Herman, T. Ysebaert, and H.J. De Vriend. 2013. Ecosystem-based coastal defence in the face of global change. Nature 504 (7478): 79–83. https://doi.org/10.1038/nature12859.

    Article  CAS  Google Scholar 

  • Trentmann, J. 2011. Dichtung aus Wasserbausteinen mit Vollverguss aus hydraulisch gebundenem Vergusstoff. In DWA (Ed.): KW Korrespondenz Wasserwirtschaft. 4:452–458.

  • U.S. Army Corps of Engineers (USACE). 2002. Coastal engineering manual, 1110th-2nd–110th edn. Washington, D.C.: U.S. Army Corps of Engineers.

    Google Scholar 

  • U.S. Army Corps of Engineers (USACE). 2012. Engineering with nature fact sheet. https://ewn.el.erdc.dren.mil/pub/EWNFactSheet_Final.pdf. Accessed 12 April 2018.

  • Van der Nat, A., P. Vellinga, R. Leemans, and E. van Slobbe. 2016. Ranking coastal flood protection designs from engineered to nature-based. Ecological Engineering 87: 80–90. https://doi.org/10.1016/j.ecoleng.2015.11.007.

    Article  Google Scholar 

  • Van Katwijk, M.M., and N. Dankers. 2001. Ecological coastal protection; mussel beds, seagrass beds and salt-marshes. Poster at Symposium “Food for thought: structuring factors of shallow marine coastal communities”, 29–30. Texel: NIOZ. https://doi.org/10.13140/RG.2.2.30768.97286.

    Book  Google Scholar 

  • Van Loon-Steensma, J.M., H.A. Schelfhout, and P. Vellinga. 2014. Green adaptation by innovative dike concepts along the Dutch Wadden Sea coast. Environmental Science & Policy 44: 108–125. https://doi.org/10.1016/j.envsci.2014.06.009.

    Article  Google Scholar 

  • Van Rijn, L. C. 2013. Design of hard coastal structures against erosion. Accessed online 22/10/2018. https://www.leovanrijn-sediment.com/papers/Coastalstructures2013.pdf. Accessed 22 Oct 2018.

  • Wiecek, D. 2009. Environmentally friendly seawalls: A guide to improving the environmental value of seawalls and seawall-lined foreshores in estuaries.

  • Wilke, M., B. Krueger, M. Schuell, and P. Tschernutter. 2012. Erosion resistant construction of overflow sections by means of geosynthetic concrete mattresses. In Proceedings 6th International Conference on Scour and Erosion (ICSE-6). Paris, France, 27.-31.08.2012: Société Hydrotechnique De France, eds. J.-J. Fry, C. Chevalier, 1231–1238.

  • Winterwerp, J.C., P.L.A. Erftemeijer, N. Suryadiputra, P. van Eijk, and L. Zhang. 2013. Defining eco-Morphodynamic requirements for rehabilitating eroding mangrove-mud coasts. Wetlands. 33 (3): 515–526. https://doi.org/10.1007/s13157-013-0409-x.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to DAAD (German Academic Exchange Service) and Exceed Swindon (International Network on Sustainable Water Management in Developing Countries) for funding the Integrating Ecosystems in Coastal Engineering Practice (INECEP) Summer School.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Schoonees.

Additional information

Communicated by Nathan Waltham

Appendix

Appendix

Table 3 Summary of selected design guidelines for coastal structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schoonees, T., Gijón Mancheño, A., Scheres, B. et al. Hard Structures for Coastal Protection, Towards Greener Designs. Estuaries and Coasts 42, 1709–1729 (2019). https://doi.org/10.1007/s12237-019-00551-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00551-z

Keywords

Navigation